Advances in Computational Mathematics

, Volume 23, Issue 4, pp 393–414

Intertwining unisolvent arrays for multivariate Lagrange interpolation


DOI: 10.1007/s10444-004-1840-6

Cite this article as:
Calvi, JP. Adv Comput Math (2005) 23: 393. doi:10.1007/s10444-004-1840-6


Generalizing a classical idea of Biermann, we study a way of constructing a unisolvent array for Lagrange interpolation in Cn+m out of two suitably ordered unisolvent arrays respectively in Cn and Cm. For this new array, important objects of Lagrange interpolation theory (fundamental Lagrange polynomials, Newton polynomials, divided difference operator, vandermondian, etc.) are computed.


multivariate polynomialsLagrange interpolationunisolvent arrays

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques E. PicardUniversité Paul SabatierToulouse Cedex 4France