[1]

M.D. Buhmann, *Radial Basis Functions* (Cambridge Univ. Press, Cambridge, 2003).

[2]

M.D. Buhmann and N. Dyn, Spectral convergence of multiquadric interpolation, in: *Multivariate Approximation: From CAGD to Wavelets*, eds. K. Jetter and F.I. Utreras (World Scientific, Singapore, 1993) pp. 35–75.

[3]

M.D. Buhmann and M.J.D. Powell, Radial basis function interpolation on an infinite regular grid, in: *Algorithms for Approximation*, Vol. II, eds. M.G. Cox and J.C. Mason (Chapman & Hall, London, 1990) pp. 146–169.

[4]

R.E. Carlson and T.A. Foley, The parameter *R*^{2} in multiquadric interpolation, Comput. Math. Appl. 21 (1991) 29–42.

[5]

T.A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl. 43 (2002) 413–422.

[6]

T.A. Foley, Near optimal parameter selection for multiquadric interpolation, J. Appl. Sci. Comput. 1 (1994) 54–69.

[7]

B. Fornberg, *A Practical Guide to Pseudospectral Methods* (Cambridge Univ. Press, Cambridge, 1996).

[8]

B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl. (2004) to appear.

[9]

B. Fornberg, G. Wright and E. Larsson, Some observations regarding interpolants in the limit of flat radial basis functions, Comput. Math. Appl. 47 (2004) 37–55.

[10]

K. Jetter, Multivariate approximation from the cardinal point of view, in: *Approximation Theory*, Vol. VII, eds. E.W. Cheney, C.K. Chui and L.L. Schumaker (Academic Press, New York, 1992) pp. 131–161.

[11]

D.S. Jones, *Generalized Functions* (McGraw-Hill, New York, 1966).

[12]

E.J. Kansa, A scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19(8/9) (1990) 127–145.

[13]

E.J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19(8/9) (1990) 147–161.

[14]

E. Larsson and B. Fornberg, A numerical study of radial basis function based solution methods for elliptic PDEs, Comput. Math. Appl. 46 (2003) 891–902.

[15]

M.J. Lighthill, *Fourier Analysis and Generalised Functions* (Cambridge Univ. Press, Cambridge, 1958).

[16]

W.R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comput. Math. Appl. 24 (1992) 121–138.

[17]

W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive functions I, Approx. Theory Appl. 4 (1988) 77–89.

[18]

W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive functions II, Approx. Theory Appl. 4, and Math. Comp. 54 (1990) 211–230.

MATH[19]

S. Rippa, An algorithm for selecting a good value for the parameter *c* in radial basis function interpolation, Adv. Comput. Math. 11 (1999) 193–210.

[20]

J. Yoon, Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal. 33(4) (2001) 946–958.