Acta Biotheoretica

, 57:457

A Tissue-Level Electromechanical Model of the Left Ventricle: Application to the Analysis of Intraventricular Pressure

  • Virginie Le Rolle
  • Guy Carrault
  • Pierre-Yves Richard
  • Philippe Pibarot
  • Louis-Gilles Durand
  • Alfredo I. Hernández
Regular Article

DOI: 10.1007/s10441-009-9092-y

Cite this article as:
Le Rolle, V., Carrault, G., Richard, PY. et al. Acta Biotheor (2009) 57: 457. doi:10.1007/s10441-009-9092-y
  • 77 Downloads

Abstract

The ventricular pressure profile is characteristic of the cardiac contraction progress and is useful to evaluate the cardiac performance. In this contribution, a tissue-level electromechanical model of the left ventricle is proposed, to assist the interpretation of left ventricular pressure waveforms. The left ventricle has been modeled as an ellipsoid composed of twelve mechano-hydraulic sub-systems. The asynchronous contraction of these twelve myocardial segments has been represented in order to reproduce a realistic pressure profiles. To take into account the different energy domains involved, the tissue-level scale and to facilitate the building of a modular model, multiple formalisms have been used: Bond Graph formalism for the mechano-hydraulic aspects and cellular automata for the electrical activation. An experimental protocol has been defined to acquire ventricular pressure signals from three pigs, with different afterload conditions. Evolutionary Algorithms have been used to identify the model parameters in order to minimize the error between experimental and simulated ventricular pressure signals. Simulation results show that the model is able to reproduce experimental ventricular pressure. In addition, electro-mechanical activation times have been determined in the identification process. For example, the maximum electrical activation time is reached, respectively, 96.5, 139.3 and 131.5 ms for the first, second, and third pigs. These preliminary results are encouraging for the application of the model on non-invasive data like ECG, arterial pressure or myocardial strain.

Keywords

Biomedical systems modeling Biomedical model simulation Model-based interpretation Identification Ventricular pressure 

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Virginie Le Rolle
    • 1
    • 2
    • 6
  • Guy Carrault
    • 1
    • 2
  • Pierre-Yves Richard
    • 3
  • Philippe Pibarot
    • 4
  • Louis-Gilles Durand
    • 5
  • Alfredo I. Hernández
    • 1
    • 2
  1. 1.INSERM, U642RennesFrance
  2. 2.Université de Rennes 1, LTSIRennesFrance
  3. 3.Supelec IETRCesson-Sévigné cedexFrance
  4. 4.Institut de cardiologie de Québec, Hôpital LavalUniversité LavalSte-FoyCanada
  5. 5.Institut de recherches cliniques de MontréalUniversité de MontréalMontréalCanada
  6. 6.LTSI, Campus de Beaulieu, Université de Rennes 1Rennes CedexFrance

Personalised recommendations