Skip to main content
Log in

Dimension Reduction for Compressible Viscous Fluids

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider the barotropic Navier-Stokes system describing the motion of a compressible viscous fluid confined to a cavity shaped as a thin rod Ω ε =εQ×(0,1), QR 2. We show that the weak solutions in the 3D domain converge to (strong) solutions of the limit 1D Navier-Stokes system as ε→0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dain, S.: Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial Differ. Equ. 25, 535–540 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  4. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)

    Google Scholar 

  5. Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–631 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iftimie, D., Raugel, G., Sell, G.R.: Navier-Stokes equations in thin 3D domains with Navier boundary conditions. Indiana Univ. Math. J. 56(3), 1083–1156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kazhikhov, A.V.: Correctness “in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Din. Splošn. Sredy (Vyp. 21 Tecenie Zidkost. so Svobod. Granicami), 18–47, 188 (1975)

  9. Lewicka, M., Müller, S.: The uniform Korn-Poincaré inequality in thin domains. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(3), 443–469 (2011)

    Article  MATH  Google Scholar 

  10. Lions, P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models. Oxford Science Publication, Oxford (1996)

    Google Scholar 

  11. Lions, P.-L.: Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  12. Lovicar, V., Straškraba, I., Valli, A.: On bounded solutions of one-dimensional compressible Navier-Stokes equations. Rend. Semin. Mat. Univ. Padova 83, 81–95 (1990)

    MATH  Google Scholar 

  13. Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 39(4), 1344–1365 (2007/08)

    Article  MathSciNet  Google Scholar 

  14. Rajagopal, K.R.: A new development and interpretation of the Navier-Stokes fluid which reveals why the Stokes assumption is inapt. Int. J. Non-Linear Mech. 50, 141–151 (2013)

    Article  Google Scholar 

  15. Raugel, G., Sell, G.R.: Navier-Stokes equations in thin 3D domains. III. Existence of a global attractor. In: Turbulence in Fluid Flows. IMA Vol. Math. Appl., vol. 55, pp. 137–163. Springer, New York (1993)

    Chapter  Google Scholar 

  16. Raugel, G., Sell, G.R.: Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6(3), 503–568 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Raugel, G., Sell, G.R.: Navier-Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, vol. XI, Paris, 1989–1991. Pitman Res. Notes Math. Ser., vol. 299, pp. 205–247. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  18. Reshetnyak, Yu.G.: Stability Theorems in Geometry and Analysis. Mathematics and Its Applications, vol. 304. Kluwer Academic, Dordrecht (1994). Translated from the 1982 Russian original by N.S. Dairbekov and V.N. Dyatlov, and revised by the author, Translation edited and with a foreword by S.S. Kutateladze

    Google Scholar 

  19. Vodák, R.: Asymptotic analysis of steady and nonsteady Navier-Stokes equations for barotropic compressible flow. Acta Appl. Math. 110(2), 991–1009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Eduard Feireisl acknowledges the support of the GAČR (Czech Science Foundation) project P201-13-00522S in the framework of RVO: 67985840.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bella, P., Feireisl, E. & Novotný, A. Dimension Reduction for Compressible Viscous Fluids. Acta Appl Math 134, 111–121 (2014). https://doi.org/10.1007/s10440-014-9872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9872-5

Keywords

Navigation