Acta Applicandae Mathematicae

, Volume 125, Issue 1, pp 209–229

Periodic Homogenization of Parabolic Nonstandard Monotone Operators

Authors

  • Rodrigue Kenne Bogning
    • Faculty of Sciences, Department of MathematicsUniversity of Yaounde I
    • École Normale Supérieure de YaoundéUniversity of Yaounde I
Article

DOI: 10.1007/s10440-012-9788-x

Cite this article as:
Bogning, R.K. & Nnang, H. Acta Appl Math (2013) 125: 209. doi:10.1007/s10440-012-9788-x
  • 155 Views

Abstract

We study the periodic homogenization for a family of parabolic problems with nonstandard monotone operators leading to Orlicz spaces. After proving the existence theorem based on the classical Galerkin procedure combined with the Stone-Weierstrass theorem, the fundamental in this topic is the determination of the global homogenized problem via the two-scale convergence method adapted to this type of spaces.

Keywords

Global solutionPeriodic homogenizationTwo-scale convergenceNonstandard monotone operatorsOrlicz spaces

Mathematics Subject Classification (2010)

35B2735B4046E3074G25

Copyright information

© Springer Science+Business Media Dordrecht 2012