Skip to main content

Advertisement

Log in

Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate–gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akkineni, A. R., T. Ahlfeld, A. Lode, and M. Gelinsky. Highly concentrated alginate/gellan gum composites for 3d plotting of complex tissue engineering scaffolds. Polymers 8:170, 2016.

    Article  Google Scholar 

  2. Akkineni, A. R., Y. Luo, M. Schumacher, B. Nies, A. Lode, and M. Gelinsky. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27:264–274, 2015.

    Article  CAS  PubMed  Google Scholar 

  3. Almeida, C. R., T. Serra, M. I. Oliveira, J. A. Planell, M. A. Barbosa, and M. Navarro. Impact of 3-d printed pla-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-d structures on inflammation. Acta Biomater. 10:613–622, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Bergmann, C. J., J. C. Odekerken, T. J. Welting, F. Jungwirth, D. Devine, L. Bouré, S. Zeiter, L. W. van Rhijn, R. Telle, and H. Fischer. Calcium phosphate based three-dimensional cold plotted bone scaffolds for critical size bone defects. Biomed. Res. Int. 2014. doi:10.1155/2014/852610.

  5. Butscher, A., M. Bohner, N. Doebelin, L. Galea, O. Loeffel, and R. Müller. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering. Acta Biomater. 9:5369–5378, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Castilho, M., C. Moseke, A. Ewald, U. Gbureck, J. Groll, I. Pires, J. Teßmar, and E. Vorndran. Direct 3d powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6:015006, 2014.

    Article  PubMed  Google Scholar 

  7. Detsch, R., I. Dieser, U. Deisinger, F. Uhl, S. Hamisch, G. Ziegler, and G. Lipps. Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response. J. Biomed. Mater. Res. A 92:493–503, 2010.

    PubMed  Google Scholar 

  8. Fedorovich, N. E., J. R. De Wijn, A. J. Verbout, J. Alblas, and W. J. Dhert. Threedimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Eng. Part A 14:127–133, 2008.

    Article  CAS  PubMed  Google Scholar 

  9. Franco, J., P. Hunger, M. E. Launey, A. P. Tomsia, and E. Saiz. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 6:218–228, 2010.

    Article  CAS  PubMed  Google Scholar 

  10. Ginebra, M.-P., C. Canal, M. Espanol, D. Pastorino, and E. B. Montufar. Calcium phosphate cements as drug delivery materials. Adv. Drug. Deliv. Rev. 64:1090–1110, 2012.

    Article  CAS  PubMed  Google Scholar 

  11. Ginebra, M.-P., M. Espanol, E. B. Montufar, R. A. Perez, and G. Mestres. New processing approaches in calcium phosphate cements and their applications in regenerative medicine. Acta Biomater. 6:2863–2873, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Ginebra, M.-P., T. Traykova, and J. Planell. Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release 113:102–110, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Habibovic, P., U. Gbureck, C. J. Doillon, D. C. Bassett, C. A. van Blitterswijk, and J. E. Barralet. Osteoconduction and osteoinduction of low-temperature 3d printed bioceramic implants. Biomaterials 29:944–953, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Habraken, W., J. Wolke, A. Mikos, and J. Jansen. Plga microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. J. Biomater. Sci. Polym. Ed. 19(9):1171–1188, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Heinemann, S., S. Rössler, M. Lemm, M. Ruhnow, and B. Nies. Properties of injectable ready-to-use calcium phosphate cement based on water-immiscible liquid. Acta Biomater. 9:6199–6207, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Hutmacher, D. W., J. T. Schantz, C. X. F. Lam, K. C. Tan, and T. C. Lim. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen Med. 1:245–260, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Khairoun, I., M. Boltong, F. Driessens, and J. Planell. Effect of calcium carbonate on clinical compliance of apatitic calcium phosphate bone cement. J. Biomed. Mater. Res. 38:356–360, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Knaack, S., A. Lode, B. Hoyer, A. Rösen-Wolff, A. Gabrielyan, I. Roeder, and M. Gelinsky. Heparin modification of a biomimetic bone matrix for controlled release of VEGF. J Biomed Mater Res A 102:3500–3511, 2014.

    Article  PubMed  Google Scholar 

  19. Kundu, J., J.-H. Shim, J. Jang, S.-W. Kim, and D.-W. Cho. An additive manufacturing based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9:1286–1297, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. Li, C., L. Gao, F. Chen, and C. Liu. Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting. J. Mater. Sci. 50:7182–7191, 2015.

    Article  CAS  Google Scholar 

  21. Lode, A., K. Meissner, Y. Luo, F. Sonntag, S. Glorius, B. Nies, C. Vater, F. Despang, T. Hanke, and M. Gelinsky. Fabrication of porous scaffolds by three-dimensional plotting of a pasty calcium phosphate bone cement under mild conditions. J. Tissue Eng. Regen. Med. 8:682–693, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Luo, Y., A. Lode, A. R. Akkineni, and M. Gelinsky. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3d plotting. RSC Adv. 5:43480–43488, 2015.

    Article  CAS  Google Scholar 

  23. Luo, Y., A. Lode, F. Sonntag, B. Nies, and M. Gelinsky. Well-ordered biphasic calcium phosphate–alginate scaffolds fabricated by multi-channel 3d plotting under mild conditions. J. Mater. Chem. B 1:4088–4098, 2013.

    Article  CAS  Google Scholar 

  24. Maazouz, Y., E. Montufar, J. Guillem-Marti, I. Fleps, C. Öhman, C. Persson, and M. Ginebra. Robocasting of biomimetic hydroxyapatite scaffolds using self-setting inks. J. Mater. Chem. B 2:5378–5386, 2014.

    Article  CAS  Google Scholar 

  25. Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  26. Miranda, P., E. Saiz, K. Gryn, and A. P. Tomsia. Sintering and robocasting of tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2:457–466, 2006.

    Article  PubMed  Google Scholar 

  27. Odedra, D., L. L. Y. Chiu, M. Shoichet, and M. Radisic. Endothelial cells guided by immobilized gradients of vascular endothelial growth factor on porous collagen scaffolds. Acta Biomater. 7:3027–3035, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Park, S., G. Kim, Y. C. Jeon, Y. Koh, and W. Kim. 3d polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20:229–234, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Poldervaart, M. T., H. Wang, J. van der Stok, H. Weinans, S. C. Leeuwenburgh, F. C. Öner, W. J. Dhert, and J. Alblas. Sustained release of bmp-2 in bioprinted alginate for osteogenicity in mice and rats. PLoS One 8:e72610, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schütz, K., A.-M. Placht, B. Paul, S. Brüggemeier, M. Gelinsky, and A. Lode. Threedimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J. Tissue Eng. Regen. Med. 2015. doi:10.1002/term.2058.

  31. Schuurman, W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. Dhert, D. W. Hutmacher, F. P. Melchels, T. J. Klein, and J. Malda. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13:551–561, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Seitz, H., U. Deisinger, B. Leukers, R. Detsch, and G. Ziegler. Different calcium phosphate granules for 3-d printing of bone tissue engineering scaffolds. Adv. Eng. Mater. 11:B41–B46, 2009.

    Article  CAS  Google Scholar 

  33. Smith, A. M., R. Shelton, Y. Perrie, and J. J. Harris. An initial evaluation of gellan gum as a material for tissue engineering applications. J. Biomater. Appl. 22:241–254, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Visser, J., B. Peters, T. J. Burger, J. Boomstra, W. J. Dhert, F. P. Melchels, and J. Malda. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:035007, 2013.

    Article  PubMed  Google Scholar 

  35. Wu, C., Y. Luo, G. Cuniberti, Y. Xiao, and M. Gelinsky. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7:2644–2650, 2011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by funding of the Saxon Ministry for Higher Education and Arts (SMWK; Contract No. 4-7531.60/29/24) and the Excellence Initiative by the German Federal and State Governments (Institutional Strategy, measure “support the best”). We thank Sophie Brüggemeier for excellent technical assistance, Matthias Schumacher for fruitful discussions and Stefan Odenbach and co-workers (Technische Universität Dresden) for support with µ-CT measurements.

Conflicts of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Lode.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlfeld, T., Akkineni, A.R., Förster, Y. et al. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel. Ann Biomed Eng 45, 224–236 (2017). https://doi.org/10.1007/s10439-016-1685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1685-4

Keywords

Navigation