Skip to main content

Advertisement

Log in

Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Several physical methods have been developed to introduce nucleic acid expression vectors into mammalian cells. Magnetic transfection (magnetofection) is one such transfection method, and it involves binding of nucleic acids such as DNA, RNA or siRNA to magnetic nanoparticles followed by subsequent exposure to external magnetic fields. However, the challenge between high efficiency of nucleic acid uptake by cells and toxicity was not totally resolved. Delivery of nucleic acids and their transport to the target cells require carefully designed and controlled systems. In this study, we introduced a novel magnetic system design providing varying magnet turn speeds and magnetic field directions. The system was tested in the magnetofection of human breast (MCF-7), prostate (DU-145, PC-3) and bladder (RT-4) cancer cell lines using green fluorescent protein DNA as a reporter. Polyethylenimine coated superparamagnetic iron oxide nanoparticles (SPIONs) were used as nucleic acid carriers. Adsorption of PEI on SPION improved the cytocompatibility dramatically. Application of external magnetic field increased intracellular uptake of nanoparticles and transfection efficiency without any additional cytotoxicity. We introduce our novel magnetism-based method as a promising tool for enhanced nucleic acid delivery into mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

SPION:

Superparamagnetic iron oxide nanoparticles

PEI:

Polyethylenimine

GFP:

Green fluorescent protein

MCF-7:

Human breast cancer

DU-145:

Human prostate cancer

PC-3:

Human prostate cancer

RT-4:

Human bladder cancer

PEG:

Polyethylene glycol

DMEM:

Dulbecco’s modified Eagle’s medium

References

  1. Arsianti, M., M. Lim, S. N. Lou, I. Y. Goon, C. P. Marquis, and R. Amal. Bi-functional gold-coated magnetite composites with improved biocompatibility. J. Colloid Interface Sci. 354:536–545, 2011.

    Article  CAS  PubMed  Google Scholar 

  2. Belting, M., S. Sandgren, and A. Wittrup. Nuclear delivery of macromolecules: barriers and carriers. Adv. Drug Deliv. Rev. 57:505–527, 2005.

    Article  CAS  PubMed  Google Scholar 

  3. Bhattarai, S. R., S. Y. Kim, K. Y. Jang, K. C. Lee, H. K. Yi, D. Y. Lee, H. Y. Kim, and P. H. Hwang. N-hexanoyl chitosan-stabilized magnetic nanoparticles: enhancement of adenoviral-mediated gene expression both in vitro and in vivo. Nanomed. Nanotechnol. Biol. Med. 4:146–154, 2008.

    Article  CAS  Google Scholar 

  4. Boussif, O., F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. U.S.A. 92:7297e301, 1992.

    Google Scholar 

  5. Buerli, T., C. Pellegrino, K. Baer, B. Lardi-Studler, I. Chudotvorova, J. M. Fritschy, I. Medina, and C. Fuhrer. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2:3090–3101, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Chapman, S. W. K., P. O. Hassa, S. Koch-Schneidemann, B. von Rechenberg, M. Hofmann-Amtenbrink, B. Steitz, A. Petri-Fink, H. Hofmann, and M. O. Hottiger. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins. J. Magn. Magn. Mater. 320:1517–1527, 2008.

    Article  Google Scholar 

  7. Chen, G., W. Chen, Z. Wu, R. Yuan, H. Li, J. Gao, and X. Shuai. MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30:1962–1970, 2009.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y., W. Wang, G. Lian, C. Qian, L. Wang, L. Zeng, C. Liao, B. Liang, B. Huang, K. Huang, and X. Shuai. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer. Int. J. Nanomed. 7:359–368, 2012.

    CAS  Google Scholar 

  9. Chen, Y., G. Lian, C. Liao, W. Wang, L. Zeng, C. Qian, K. Huang, and X. Shuai. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J. Gastroenterol. 48:809–821, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Chuah, M. K. L., D. Collen, and T. VandenDriessche. Biosafety of adenoviral vectors. Curr. Gene Ther. 3:527–543, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Coren, L. V., J. A. Thomas, E. Chertova, R. C. Sowder, II, T. D. Gagliardi, R. J. Gorelick, and D. E. Ott. Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J. Virol. 81:10047–10054, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Couchoux, H., B. Allard, C. Legrand, V. Jacquemond, and C. Berthier. Loss of caveolin-3 induced by the dystrophy-associated P104L mutation impairs L-type calcium channel function in mouse skeletal muscle cells. J. Physiol. 580:745–754, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Curcio, A., R. Marotta, A. Riedinger, D. Palumberi, A. Falqui, and T. Pellegrino. Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chem. Commun. (Camb.) 48:2400–2402, 2012.

    Article  CAS  Google Scholar 

  14. Dobson, J. Gene therapy progress and prospects: magnetic nanoparticlebased gene delivery. Nat. Gene Ther. 13:283–287, 2006.

    Article  CAS  Google Scholar 

  15. Eberhart, K., O. Oral, and D. Gozuacik. Induction of autophagic cell death by anticancer agents. In: Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, and Infection, edited by M. Hayat. Amsterdam: Elsevier Academic Pres, 2013, pp. 179–202.

    Google Scholar 

  16. Fallini, C., G. J. Bassell, and W. Rossoll. High-efficiency transfection of cultured primary motor neurons to study protein localization, trafficking, and function. Mol. Neurodegener. 5:17, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fouriki, A., M. A. Clements, N. Farrow, and J. Dobson. Efficient transfection of MG63 osteoblasts using magnetic nanoparticles and oscillating magnetic fields. J. Tissue Eng. Regen. Med. 8(3):169–175, 2013.

    Article  Google Scholar 

  18. Gersting, S. W., U. Schillinger, J. Lausier, P. Nicklaus, C. Rudolph, C. Plank, D. Reinhardt, and J. Rosenecker. Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med. 6:913–922, 2004.

    Article  CAS  PubMed  Google Scholar 

  19. Gozuacik, D., H. Yagci-Acar, Y. Akkoc, A. Kosar, A. I. Dogan-Ekici, and S. Ekici. Anticancer use of nanoparticles as nucleic acid carriers. J. Biomed. Nanomed. 10:1751–1783, 2014.

    Article  CAS  Google Scholar 

  20. Gupta, A. K., R. R. Naregalkar, V. D. Vaidya, and M. Gupta. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Huth, S., J. Lausier, C. Rudolph, et al. Characterisation of the mechanism of magnetofection. Mol. Ther. 7:372–372, 2003.

    Google Scholar 

  22. Huth, S., J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med. 6:923–936, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins, S. I., M. R. Pickard, N. Granger, and D. M. Chari. Magnetic nanoparticle mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano 5:6527–6538, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Kamau, S. W., P. O. Hassa, B. Steitz, A. Petri-Fink, H. Hofmann, M. B. Hofmann-Amtenbrink, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res. 34:40, 2006.

    Article  Google Scholar 

  25. Kim, T. S., S. H. Lee, G. T. Gang, Y. S. Lee, S. U. Kim, D. B. Koo, M. Y. Shin, C. K. Park, and D. S. Lee. Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim. 45:201–206, 2010.

    Article  Google Scholar 

  26. Kojima, A., K. Nakahama, K. Ohno-Matsui, N. Shimada, K. Mori, S. Iseki, T. Sato, M. Mochizuki, and I. Morita. Connexin 43 contributes to differentiation of retinal pigment epithelial cells via cyclic AMP signaling. Biochem. Biophys. Res. Commun. 366:532–538, 2008.

    Article  CAS  PubMed  Google Scholar 

  27. Krotz, F., H. Y. Sohn, T. Gxtloe, C. Plank, and U. Pohl. Magnetofection potentiates gene delivery to cultured endothelial cells. J. Vasc. Res. 40:425–434, 2003.

    Article  PubMed  Google Scholar 

  28. Krotz, F., C. de Wit, H. Y. Sohn, S. Zahler, T. Gloe, U. Pohl, et al. Magnetofection—a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. 7:700e10, 2003.

    Article  Google Scholar 

  29. Kumar, A., P. K. Jena, S. Behera, R. F. Lockey, and S. Mohapatra. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 6:64–69, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kurtoğlu, E., A. Bilgin, H. Y. Acar, and A. Kosar. Development of magnetic pumps based on ferrofluid actuation with varying magnetic fields for micropumping applications. Microfluidics Nanofluidics 13:683–694, 2012.

    Article  Google Scholar 

  31. Lamkowsky, M. C., M. Geppert, M. M. Schmidt, and R. Dringen. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J. Biomed. Mater. Res. A 100(2):323–334, 2011.

    PubMed  Google Scholar 

  32. Lee, C. H., E. Y. Kim, K. Jeon, J. C. Tae, K. S. Lee, Y. O. Kim, M. Y. Jeong, C. W. Yun, D. K. Jeong, S. K. Cho, J. H. Kim, H. Y. Lee, K. Z. Riu, S. G. Cho, and S. P. Park. Simple, efficient, and reproducible gene transfection of mouse embryonic stem cells by magnetofection. Stem Cells Dev. 17:133–141, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Lim, J., and J. Dobson. Improved transfection efficiency of HUVEC and MEF cells using DNA-complexes with magnetic nanoparticles in an oscillating magnetic field. J. Genet. 91:223–227, 2012.

    Article  PubMed  Google Scholar 

  34. Lin, M. M., D. K. Kim, A. J. El Haj, and J. Dobson. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans. Nanobiosci. 7:298–305, 2008.

    Article  Google Scholar 

  35. Long, L., W. Wang, X. D. Cai, D. Cheng, X. Shuai, and Y. Peng. PinX1-siRNA/mPEG-PEI-SPION combined with doxorubicin enhances the inhibition of glioma growth. Exp. Ther. Med. 7:1170–1176, 2014.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Mahmoudi, M., S. Sant, B. Wang, S. Laurent, and T. Sen. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63:24–46, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. McBain, S. C., U. Griesenbach, S. Xenariou, A. Keramane, C. D. Batich, E. W. Alton, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19(40):405102, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Moghimi, S. M., P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11:990–995, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Namgung, R., K. Singha, M. K. Yu, S. Jon, Y. S. Kim, Y. Ahn, I. K. Park, and W. J. Kim. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213, 2010.

    Article  CAS  PubMed  Google Scholar 

  40. Newland, B., Y. Zheng, Y. Jin, M. Abu-Rub, H. Cao, W. Wang, and A. Pandit. Single cyclized molecule versus single branched molecule: a simple and efficient 3D “knot” polymer structure for nonviral gene delivery. J. Am. Chem. Soc. 134:4782–4789, 2012.

    Article  CAS  PubMed  Google Scholar 

  41. Pang, P., C. Wu, M. Shen, F. Gong, K. Zhu, Z. Jiang, S. Guan, H. Shan, and X. Shuai. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells. PLoS ONE 8:76612, 2013.

    Article  Google Scholar 

  42. Pang, P., B. Li, X. Hu, Z. Kang, S. Guan, F. Gong, X. Meng, D. Li, M. Huang, and H. Shan. Multifunctional nano-vector for gene delivery into human adipose derived mesenchymal stem cells and in vitro cellular magnetic resonance imaging. Zhonghua Yi Xue Za Zhi. 94:1021–1024, 2014.

    CAS  PubMed  Google Scholar 

  43. Plank, C., U. Schillinger, F. Scherer, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384:737–747, 2003.

    Article  CAS  PubMed  Google Scholar 

  44. Prijic, S., J. Scancar, R. Romih, et al. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Membr. Biol. 236:167–179, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Prijic, S., L. Prosen, M. Cemazar, J. Scancar, R. Romih, J. Lavrencak, V. B. Bregar, A. Coer, M. Krzan, A. Znidarsic, and G. Sersa. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–4391, 2012.

    Article  CAS  PubMed  Google Scholar 

  46. Romero-Nieto, C., A. Medina, A. Molina-Ontoria, C. G. Claessens, L. Echegoyen, N. Martin, T. Torres, and M. D. Guldi. Toward enhancing light harvesting-subphthalocyanines as electron acceptors. Chem. Commun. 48:4953–4955, 2012.

    Article  CAS  Google Scholar 

  47. Scherer, F., M. Anton, U. Schillinger, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 9:102–109, 2002.

    Article  CAS  PubMed  Google Scholar 

  48. Schillinger, U., T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krotz, J. Hirschberger, C. Bergemann, and C. Plank. Advances in magnetofections magnetically guided nucleic acid delivery. J. Magn. Mater. 293:501–508, 2005.

    Article  CAS  Google Scholar 

  49. Sesen, M., K. Sendur, M. P. Menguc, H. F. Yagci Acar, and A. Koşar. A heat removal system with the actuation of magnetic nanoparticles. J. Appl. Phys. 112(6):064320, 2012.

    Article  Google Scholar 

  50. Thassu, D., M. Deleers, and Y. Pathak. Nanoparticulate drug delivery systems: an overview. In: Nanoparticulate Drug Delivery Systems, edited by D. Thassu, M. Deleers, and Y. Pathak. New York: Informa Healthcare, 2007, pp. 1–31.

    Chapter  Google Scholar 

  51. Vainauska, D., S. Kozireva, A. Karpovs, M. Čistjakovs, and M. Bariševs. A novel approach for nucleic acid delivery into cancer cells. Medicina (Kaunas) 48:324–349, 2012.

    Google Scholar 

  52. VandenDriessehe, T., D. Collen, and M. K. L. Chuah. Biosafety of onco-retroviral vectors. Curr. Gene Ther. 3:501–515, 2003.

    Article  Google Scholar 

  53. Wahajuddin, and S. Arora. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7:3445–3471, 2012.

    Article  CAS  Google Scholar 

  54. Wang, X. L., L. Z. Zhou, Y. J. Ma, X. Li, and H. C. Gu. Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2:365–372, 2009.

    Article  CAS  Google Scholar 

  55. Wu, C., F. Gong, P. Pang, M. Shen, K. Zhu, D. Cheng, Z. Liu, and H. Shan. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS ONE 8:66416, 2013.

    Article  Google Scholar 

  56. Zhao, T., H. Zhang, B. Newland, A. Aied, D. Zhou, and W. Wang. Significance of branching for transfection: synthesis of highly branched degradable functional poly(dimethylaminoethyl methacrylate) by vinyl oligomer combination. Angew. Chem. Int. Ed. 53:6095–6100, 2014.

    Article  CAS  Google Scholar 

  57. Zhou, D., C. Li, Y. Hu, H. Zhou, J. Chen, Z. Zhanga, and T. Guo. PLL/pDNA/P(His-co-DMAEL) ternary complexes: assembly, stability and gene delivery. J. Mater. Chem. 22:10743–10751, 2012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Sabanci University Nanotechnology Research and Application Center (SUNUM) and Koc University Surface Science and Technology Center (KUYTAM) for the continued equipment and characterization support. This work was supported by Turkish Scientific Council (TUBITAK), grant number: 112M875, Sabanci University and Turkish Academy of Sciences. Graduate student support provided by the Faculty of Engineering and Natural Sciences of Sabanci University is greatly appreciated. D.G. is a recipient of EMBO-SDIG Award. A.K. received TUBITAK Incentive Award. D.G. and A.K. are recipients of Turkish Academy of Sciences (TUBA-GEBIP) Award. H.Y.A received National L`Oreal Women in Science Reward in Materials Science.

Conflict of interest

The authors declare that they have no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Koşar.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oral, O., Cıkım, T., Zuvin, M. et al. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules. Ann Biomed Eng 43, 2816–2826 (2015). https://doi.org/10.1007/s10439-015-1331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1331-6

Keywords

Navigation