Skip to main content
Log in

Synergy Between Intercellular Communication and Intracellular Ca2+ Handling in Arrhythmogenesis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Calcium is the primary signalling component of excitation-contraction coupling, the process linking electrical excitability of cardiac muscle cells to coordinated contraction of the heart. Understanding \({\text{Ca}}^{2+}\) handling processes at the cellular level and the role of intercellular communication in the emergence of multicellular synchronization are key aspects in the study of arrhythmias. To probe these mechanisms, we have simulated cellular interactions on large scale arrays that mimic cardiac tissue, and where individual cells are represented by a mathematical model of intracellular \({\text{Ca}}^{2+}\) dynamics. Theoretical predictions successfully reproduced experimental findings and provide novel insights on the action of two pharmacological agents (ionomycin and verapamil) that modulate \({\text{Ca}}^{2+}\) signalling pathways via distinct mechanisms. Computational results have demonstrated how transitions between local synchronisation events and large scale wave formation are affected by these agents. Entrainment phenomena are shown to be linked to both intracellular \({\text{Ca}}^{2+}\) and coupling-specific dynamics in a synergistic manner. The intrinsic variability of the cellular matrix is also shown to affect emergent patterns of rhythmicity, providing insights into the origins of arrhythmogenic \({\text{Ca}}^{2+}\) perturbations in cardiac tissue in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415:198–205, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Christ, G. J., D. C. Spray, M. El-Sabban, L. K. Moore, and P. R. Brink. Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ. Res. 79:631–646, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Claycomb, W. C., N. A. Lanson, B. S. Stallworth, D. B. Egeland, J. B. Delcarpio, A. Bahinski, and N. J. Izzo Jr. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. U.S.A. 95:2979–2984, 1998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Dehmelt, L., and P. I. H. Bastiaens. Spatial organization of intracellular communication: insights from imaging. Nat. Rev. Mol. Cell. Biol. 11:440–452, 2010.

    Article  CAS  PubMed  Google Scholar 

  5. Dhillon, P. S., R. Gray, P. Kojodjojo, R. Jabr, R. Chowdhury, C. H. Fry, and N. S. Peters. Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium. Circ. Arrhythm. Electrophysiol. 6:1208–1214, 2013.

    Article  PubMed  Google Scholar 

  6. Drikakis, D., J. Lechuga, and S. Pal. Effects of shock waves on biological membranes: a molecular dynamics study. J. Comput. Theor. Nanos. 6:1437–1442, 2009.

    Article  CAS  Google Scholar 

  7. Falcke, M. Reading the patterns in living cells—the physics of Ca2+ signaling. Adv. Phys. 53:255–440, 2004.

    Article  CAS  Google Scholar 

  8. George, C. H., G. V. Higgs, and F. A. Lai. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ. Res. 93:531–540, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. George, C. H., D. Parthimos, and N. C. Silvester. A network-oriented perspective on cardiac calcium signaling. Am. J. Physiol. Cell Physiol. 303:C897–C910, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Glass L. Synchronization and rhythmic processes in physiology. Nature 410:277–284, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Guevara M. R., L. Glass, and A. Shrier. Phase locking, period doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214:1350–1353, 1981.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobsen, J. C., C. Aalkjaer, V. V. Matchkov, H. Nilsson, J. J. Freiberg, and N. H. Holstein-Rathlou. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall. Philos. Trans. A. Math. Phys. Eng. Sci. 366:3483–3502, 2008.

    Google Scholar 

  13. Jordan, J. D., E. M. Landau, and R. Iyengar. Signaling networks: the origins of cellular multitasking. Cell 103:193–200, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ter Keurs, H. E. D. J., and P. A. Boyden. Calcium and arrhythmogenesis. Physiol. Rev. 87:457–506, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kholodenko, B., M. B. Yaffe, and W. Kolch. Computational approaches for analyzing information flow in biological networks. Sci. Signal. 5:re1, 2012.

  16. Kim, J.-R., D. Shin, S. H. Jung, P. Heslop-Harrison, and K.-H. Cho. A design principle underlying the synchronization of oscillations in cellular systems. J. Cell Sci. 123:537–543, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Kitano, H. Grand challenges in systems physiology. Front. Physiol. 1:3, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Koenigsberger, M., R. Sauser, and J.-J. Meister. Emergent properties of electrically coupled smooth muscle cells. Bull. Math. Biol. 67:1253–1272, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Krikler, D. M. Verapamil in arrhythmia. Br. J. Clin. Pharmacol. 21(Suppl 2):1835:1895, 1986.

  20. Kurz, F. T., M. A. Aon, B. O’Rourke, and A. A. Armoundas. Spatio-temporal oscillations of individual mitochondria in cardiac mycocytes reveal modulation of synchronized mitochondrial clusters. Proc. Natl Acad. Sci. U.S.A. 107:14315–14320, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lakatta, E. G., V. A. Maltsev, K. Y. Bogdanov, M. D. Stern, and T. M. Vinogradova. Cyclic variation of intracellular calcium: a critical factor for cardiac pacemaker cell dominance. Circ. Res. 92:E45–E50, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y.-S., O. Z. Liu, and E. A. Sobie. Decoding myocardial Ca2+ signals across multiple spatial scales: a role for sensitivity analysis. J. Mol. Cell. Cardiol. 58:92–99, 2003.

    Article  Google Scholar 

  23. Li, X., and J. M. Simard. Multiple connexins form gap junction channels in rat basilar artery smooth muscle cells. Circ. Res. 84:1277–1284, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Miura, M., P. A. Boyden, and H. E. ter Keurs. Calcium waves during triggered propagated contractions in intact trabeculae. Am. J. Physiol. 274:H266–H276, 1998.

    CAS  PubMed  Google Scholar 

  25. Moreno, A. P., M. B. Rook, G. L. Fishman, and D. C. Spray. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys. J. 67:113–119, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nakamura, N., T. Yamazawa, Y. Okubo, and M. Iino. Temporal switching and cell-to-cell variability in Ca2+ release activity in mammalian cells. Mol. Syst. Biol. 5:247, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Nivala, M., C. Y. Ko, M. Nivala, J. M. Weiss, and Z. Qu. Criticality in intracellular calcium signaling in cardiac myocytes. Biophys. J. 102:2433–2442, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Novak, B., and J. J. Tyson. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9:981–991, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Parthimos, D., D. H. Edwards, and T. M. Griffith. Minimal model of arterial chaos generated by coupled intracellular and membrane Ca2+ oscillators. Am. J. Physiol. Heart Circ. Physiol. 46:H1119–H1144, 1999.

    Google Scholar 

  30. Parthimos, D., R. E. Haddock, C. E. Hill, and T. Griffith. Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys. J. 93:1534–1556, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Postma, A.V., I. Denjoy, T. M. Hoorntje, J. M. Lupoglazoff, A. Da Costa, P. Sebillon, M. M. A. M. Mannens, A. A. M. Wilde, and P. Guicheney. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91:E21–E26, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. Roell, W., T. Lewalter, P. Sasse, Y. N. Tallini, B. R. Choi, M. Breithart, R. Doran, U. M. Becher, S. M. Hwang, T. Bostani, J. von Maltzahn, A. Hofmann, S. Reining, B. Eiberger, B. Gabris, A. Pfeifer, A. Welz, K. Willecke, G. Salama, J. W. Schrickel, M. I. Kotlikoff, and B. K. Fleischmann. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450:819–826, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Rudy, Y. Conductive bridges in cardiac tissue. A beneficial role or an arrhythmogenic substrate? Circ. Res. 94:709–711, 2004.

    Article  CAS  PubMed  Google Scholar 

  34. Scoote, M., A. J. Williams. Myocardial calcium signalling and arrhythmia pathogenesis. Biochem. Biophys. Res. Commun. 322:1286–1309, 2004.

    Article  CAS  PubMed  Google Scholar 

  35. Severs, N. J., S. R. Coppen, E. Dupont, H. I. Yeh, Y. S. Ko, and T. Matsushita. Gap junction alterations in human cardiac disease. Cardiovasc. Res. 62:368–377, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Shaw, R. M., and Y. Rudy. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81:727–741, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Stern, M. D., L. A. Maltseva, M. Juhaszova, S. J. Sollott, E. G. Lakatta, and V. A. Maltsev. Hierarchical clustering of ryanodine receptors enables emergence of a calcium clock in sinoatrial node cells. J. Gen. Physiol. 143:577–604, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tribulova, N., S. Seki, J. Radosinska, P. Kaplan, E. Babusikova, V. Knezl, and S. Mochizuki. Myocardial Ca2+ handling and cell-to-cell coupling, key factors in prevention of sudden cardiac death. Can. J. Physiol. Pharm. 87:1120–1129, 2009.

    Article  CAS  Google Scholar 

  39. Tyson, J. J., K. C. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15:221–231, 2003.

    Article  CAS  PubMed  Google Scholar 

  40. Weiss, J. N. How does falling out of phase of intracellular calcium and action potentials across the heart’s wall spell the beginning of chaos for the heart? Dialog. Cardiovasc. Med. 15:302–310, 2010.

    Google Scholar 

  41. Weiss, J. N., M. Nivala, A. Garfinkel, and Z. Qu. Alternans and arrrhythmias: from cell to heart. Circ. Res. 108:98–112, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhang, S., Z. Zhou, Q. Gong, J. C. Makielski, and C. T. January. Mechanisms of block and identification of the verapamil binding domain to HEGR potassium channels. Circ. Res. 84:989–998, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants from the British Heart Foundation (FS/09/028/27602, FS/06/082/21723), Heart Research UK (RG2559), Wellcome Trust (094219/Z/10/Z), and the Cardiff Partnership Fund. The authors also acknowledge the financial support provided by the Sêr Cymru National Research Network in Advanced Engineering and Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Boileau.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Appendix

Appendix

Mathematical Formulation

For each individual cell, the system is described by three variables: \(x\) = \([{\text{Ca}}^{2+}]_i\) represent the cytosolic free \({\text{Ca}}^{2+}\) concentration, \(y\) = \([{\text{Ca}}^{2+}]_{SR}\) the \({\text{Ca}}^{2+}\) concentration in the SR and \(z\) the cell membrane potential.

$$\begin{aligned} \frac{dx}{dt}=\mathop {A}_{\begin{array}{c} \text {NSCC} \\ \text {influx} \end{array}}-\mathop {E_{\text{Ca}}\frac{z-z_{Ca1}}{1+e^{-(z-z_{Ca2})/R_{\text{Ca}}}}}_{\text {VOCC influx}}+\mathop {E_{Na/Ca}\frac{x}{x+x_{Na/Ca}}\left( z-z_{Na/Ca}\right) }_{\text {NCX}}\nonumber \\ -\mathop {B\frac{x^n}{x^n+x_b^n}}_{\text {SR uptake}}+\mathop {C_r\frac{x^{p_r}}{x^{p_r}+x_r^{p_r}}\frac{y^{m_r}}{y^{m_r}+y_r^{m_r}}}_{\text {RyR CICR}}-\mathop {Dx^k\left( 1+\frac{z-z_d}{R_d}\right) }_{{\text{Ca}}^{2+}\text {extrusion}}+\mathop {Ly}_{\text {SR leak}} \end{aligned}$$
(A-1a)
$$\begin{aligned} \frac{dy}{dt}=\mathop {B\frac{x^n}{x^n+x_b^n}}_{\text {SR uptake}}-\mathop {C_r\frac{x^{p_r}}{x^{p_r}+x_r^{p_r}}\frac{y^{m_r}}{y^{m_r}+y_r^{m_r}}}_{\text {RyR CICR}} \end{aligned}$$
(A-1b)
$$\begin{aligned} \frac{dz}{dt}=-\gamma \ \bigg (\mathop {E_{Cl}\frac{x}{x+x_{Cl}}\left( z-z_{Cl}\right) }_{{\text{Cl}}^{-}\text {channels}}+\mathop {2E_{\text{Ca}}\frac{z-z_{Ca1}}{1+e^{-(z-z_{Ca2})/R_{\text{Ca}}}}}_{\text {VOCC influx}}\nonumber \\ +\mathop {E_{Na/Ca}\frac{x}{x+x_{Na/Ca}}\left( z-z_{Na/Ca}\right) }_{\text {NCx}}+\mathop {E_K\left( z-z_{K}\right) \frac{x}{x+\beta e^{-(z-z_{Ca3})/R_K}}}_{{\text{K}}^{+}\text {efflux}}\bigg ) \end{aligned}$$
(A-1c)

The electric reversal potentials with respect to \({\text{Ca}}^{2+}\) and \({\text{Na}}^{+}\) are determined from the Nernst equation, see Parthimos et al. for details.29,30 The different terms and associated fixed parameter values can be found in Table 1. The subscript \(r\) refers to RyR-mediated CICR, as opposed to InsP\(_3\)-induced \({\text{Ca}}^{2+}\) release (not included in the present formulation).

For each SMC \(i\), the set of its nearest neighbours \(j \in N_i\) consist of at most 6 neighbours, disposed at the vertices of an hexagon, depending on its position within the domain or at the boundary. Two terms:

$$\begin{aligned} J_{Ca,i}&=g_{\text{Ca}} \sum _{j \in N_i} \left( x_j-x_i\right) \qquad V_{m,i}&=g_z \sum _{j \in N_i} \left( z_j-z_i\right) \end{aligned}$$
(A-2)

are added to (A-1a) and (A-1c), respectively, to model \({\text{Ca}}^{2+}\) and electrical coupling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boileau, E., George, C.H., Parthimos, D. et al. Synergy Between Intercellular Communication and Intracellular Ca2+ Handling in Arrhythmogenesis. Ann Biomed Eng 43, 1614–1625 (2015). https://doi.org/10.1007/s10439-014-1243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1243-x

Keywords

Navigation