Skip to main content
Log in

Extracellular Matrix as a Driver for Lung Regeneration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a “footprint” within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Adair-Kirk, T. L., and R. M. Senior. Fragments of extracellular matrix as mediators of inflammation. Int. J. Biochem. Cell Biol. 40:1101–1110, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Alford, A. I., and D. E. Rannels. Extracellular matrix fibronectin alters connexin43 expression by alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L680–L688, 2001.

    CAS  PubMed  Google Scholar 

  3. Badylak, S. F. An assay to quantify chemotactic properties of degradation products from extracellular matrix. Methods Mol. Biol., 1202:103–110, 2014.

  4. Balestrini, J. L., S. Chaudhry, V. Sarrazy, A. Koehler, and B. Hinz. The mechanical memory of lung myofibroblasts. Integr. Biol. (Camb). 4:410–421, 2012.

    Article  CAS  PubMed  Google Scholar 

  5. Bateman, E. D., M. Turner-Warwick, and B. C. Adelmann-Grill. Immunohistochemical study of collagen types in human foetal lung and fibrotic lung disease. Thorax 36:645–653, 1981.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bensusan, H. B., T. L. Koh, K. G. Henry, B. A. Murray, and L. A. Culp. Evidence that fibronectin is the collagen receptor on platelet membranes. Proc. Natl. Acad. Sci. USA. 75:5864–5868, 1978.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bonvillain, R. W., S. Danchuk, D. E. Sullivan, A. M. Betancourt, J. A. Semon, et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng. Part A 18:2437–2452, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Booth, A. J., R. Hadley, A. M. Cornett, A. A. Dreffs, S. A. Matthes, et al. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–876, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bornstein, P., and E. H. Sage. Matricellular proteins: extracellular modulators of cell function. Curr. Opin. Cell Biol. 14:608–616, 2002.

    Article  CAS  PubMed  Google Scholar 

  10. Bottaro, D. P., A. Liebmann-Vinson, and M. A. Heidaran. Molecular signaling in bioengineered tissue microenvironments. Ann. N. Y. Acad. Sci. 961:143–153, 2002.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, B. N. and S. F. Badylak. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res. 163(4):268–285, 2014.

  12. Burnett, W., K. Yoon, A. Finnigan-Bunick, and J. Rosenbloom. Control of elastin synthesis. J. Invest. Dermatol. 79(Suppl 1):138s–145s, 1982.

    Article  PubMed  Google Scholar 

  13. Calle, E. A., M. Ghaedi, S. Sundaram, A. Sivarapatna, M. K. Tseng, et al. Strategies for whole lung tissue engineering. IEEE Trans. Biomed. Eng. 61:1482–1496, 2014.

    Article  PubMed  Google Scholar 

  14. Clark, R. A. Regulation of fibroplasia in cutaneous wound repair. Am. J. Med. Sci. 306:42–48, 1993.

    Article  CAS  PubMed  Google Scholar 

  15. Clark, R. A., R. J. Mason, J. M. Folkvord, and J. A. McDonald. Fibronectin mediates adherence of rat alveolar type II epithelial cells via the fibroblastic cell-attachment domain. J. Clin. Invest. 77:1831–1840, 1986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Clark, R. A., L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J. Cell Sci. 108:1251–1261, 1995.

    CAS  PubMed  Google Scholar 

  17. Coraux, C., A. Delplanque, J. Hinnrasky, B. Peault, E. Puchelle, et al. Distribution of integrins during human fetal lung development. J. Histochem. Cytochem. 46:803–810, 1998.

    Article  CAS  PubMed  Google Scholar 

  18. Coraux, C., G. Meneguzzi, P. Rousselle, E. Puchelle, and D. Gaillard. Distribution of laminin 5, integrin receptors, and branching morphogenesis during human fetal lung development. Dev. Dyn. 225:176–185, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Crapo, J. D., B. E. Barry, P. Gehr, M. Bachofen, and E. R. Weibel. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126:332–337, 1982.

    CAS  PubMed  Google Scholar 

  20. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2012.

    Article  Google Scholar 

  21. DeQuach, J. A., V. Mezzano, A. Miglani, S. Lange, G. M. Keller, et al. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5:e13039, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Dunsmore, S. E., and D. E. Rannels. Extracellular matrix biology in the lung. Am. J. Physiol. 270:L3–L27, 1996.

    CAS  PubMed  Google Scholar 

  23. Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, et al. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab. Invest. 57:673–686, 1987.

    CAS  PubMed  Google Scholar 

  24. Eisenberg, J. L., A. Safi, X. Wei, H. D. Espinosa, G. S. Budinger, et al. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Res. Rep. Biol. 1–12:2012, 2011.

    Google Scholar 

  25. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Engvall, E., E. Ruoslahti, and E. J. Miller. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J. Exp. Med. 147:1584–1595, 1978.

    Article  CAS  PubMed  Google Scholar 

  27. Faulk, D. M., C. A. Carruthers, H. J. Warner, C. R. Kramer, J. E. Reing, et al. The effect of detergents on the basement membrane complex of a biologic scaffold material. Acta Biomater. 10:183–193, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Frith, J. E., R. J. Mills, J. E. Hudson, and J. J. Cooper-White. Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev. 21:2442–2456, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer Verlag, 1993.

    Book  Google Scholar 

  30. Gilbert, T. W., J. M. Freund, and S. F. Badylak. Quantification of DNA in biologic scaffold materials. J. Surg. Res. 152:135–139, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gillery, P., F. X. Maquart, and J. P. Borel. Fibronectin dependence of the contraction of collagen lattices by human skin fibroblasts. Exp. Cell Res. 167:29–37, 1986.

    Article  CAS  PubMed  Google Scholar 

  32. Gilpin, S. E., J. P. Guyette, G. Gonzalez, X. Ren, J. M. Asara, et al. Perfusion decellularization of human and porcine lungs: Bringing the matrix to clinical scale. J. Heart Lung Transplant. 33(3):298–308, 2014.

  33. Govignon, E. J., M. Murphy, J. Potzka, J. Crews, K. L. Billiar, et al. Development of a Serum-Free Human Cell Derived Extracellular Matrix (ECM). Brussels: European Tissue Repair Society, 2000.

    Google Scholar 

  34. Horwitz, A. L., and R. C. Crystal. Content and synthesis of glycosaminoglycans in the developing lung. J. Clin. Invest. 56:1312–1318, 1975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.

    Article  CAS  PubMed  Google Scholar 

  36. Iwata, T., A. Philipovskiy, A. J. Fisher, R. G. Presson, Jr., M. Chiyo, et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J Immunol. 181:5738–5747, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Johnson, T. D., J. A. Dequach, R. Gaetani, J. Ungerleider, D. Elhag, et al. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater. Sci. 2014:60283D, 2014.

    PubMed Central  PubMed  Google Scholar 

  38. Keane, T. J., R. Londono, N. J. Turner, and S. F. Badylak. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781, 2012.

    Article  CAS  PubMed  Google Scholar 

  39. Kelley, J., L. Chrin, J. T. Coflesky, and J. N. Evans. Localization of collagen in the rat lung: biochemical quantitation of types I and III collagen in small airways, vessels, and parenchyma. Lung 167:313–322, 1989.

    Article  CAS  PubMed  Google Scholar 

  40. Koyama, H., E. W. Raines, K. E. Bornfeldt, J. M. Roberts, and R. Ross. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87:1069–1078, 1996.

    Article  CAS  PubMed  Google Scholar 

  41. Laurent, G. J. Lung collagen: more than scaffolding. Thorax 41:418–428, 1986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lesur, O., K. Arsalane, and D. Lane. Lung alveolar epithelial cell migration in vitro: modulators and regulation processes. Am. J. Physiol. 270:L311–L319, 1996.

    CAS  PubMed  Google Scholar 

  43. Li, Z. Y., K. Hirayoshi, and Y. Suzuki. Expression of N-deacetylase/sulfotransferase and 3-O-sulfotransferase in rat alveolar type II cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 279:L292–L301, 2000.

    CAS  PubMed  Google Scholar 

  44. Liu, F., J. D. Mih, B. S. Shea, A. T. Kho, A. S. Sharif, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190:693–706, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu, F. and D. J. Tschumperlin. Micro-mechanical characterization of lung tissue using atomic force microscopy. J. Vis. Exp. 2011. doi:10.3791/2911

  46. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J . 79:144–152, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lotze, M. T., A. Deisseroth, and A. Rubartelli. Damage associated molecular pattern molecules. Clin. Immunol. 124:1–4, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Luque, T., E. Melo, E. Garreta, J. Cortiella, J. Nichols, et al. Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater. 9:6852–6859, 2013.

    Article  CAS  PubMed  Google Scholar 

  49. Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, et al. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.

    Article  PubMed  Google Scholar 

  50. Mackay, E. H., J. Banks, B. Sykes, and G. Lee. Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax 33:335–344, 1978.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Madri, J. A., and H. Furthmayr. Collagen polymorphism in the lung. An immunochemical study of pulmonary fibrosis. Hum. Pathol. 11:353–366, 1980.

    Article  CAS  PubMed  Google Scholar 

  52. Martin-Bermudo, M. D. Integrins modulate the Egfr signaling pathway to regulate tendon cell differentiation in the Drosophila embryo. Development 127:2607–2615, 2000.

    CAS  PubMed  Google Scholar 

  53. Mays, P. K., R. J. McAnulty, J. S. Campa, and G. J. Laurent. Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochem. J. 276(Pt 2):307–313, 1991.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Mercer, R. R., and J. D. Crapo. Spatial distribution of collagen and elastin fibers in the lungs. J. Appl. Physiol. 69:756–765, 1990.

    CAS  PubMed  Google Scholar 

  55. Mercer, R. R., M. L. Russell, and J. D. Crapo. Alveolar septal structure in different species. J. Appl. Physiol. 77(1060–6):1994, 1985.

    Google Scholar 

  56. Mih, J. D., A. S. Sharif, F. Liu, A. Marinkovic, M. M. Symer, et al. A multiwell platform for studying stiffness-dependent cell biology. PLoS One. 6:e19929, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Miner, J. H., B. L. Patton, S. I. Lentz, D. J. Gilbert, W. D. Snider, et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J. Cell Biol. 137:685–701, 1997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Murray, J. C., L. Liotta, S. I. Rennard, and G. R. Martin. Adhesion characteristics of murine metastatic and nonmetastatic tumor cells in vitro. Cancer Res. 40:347–351, 1980.

    CAS  PubMed  Google Scholar 

  59. Nguyen, N. M., D. G. Kelley, J. A. Schlueter, M. J. Meyer, R. M. Senior, et al. Epithelial laminin alpha5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung. Dev. Biol. 282:111–125, 2005.

    Article  CAS  PubMed  Google Scholar 

  60. Nichols, J. E., J. Niles, M. Riddle, G. Vargas, T. Schilagard, et al. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. Part A 19:2045–2062, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. O’Neill, J. D., R. Anfang, A. Anandappa, J. Costa, J. Javidfar, et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann. Thorac. Surg. 96:1046–1055; discussion 55–56, 2013.

  62. Otranto, M., V. Sarrazy, F. Bonte, B. Hinz, G. Gabbiani, et al. The role of the myofibroblast in tumor stroma remodeling. Cell Adh. Migr. 6:203–219, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Papakonstantinou, E., and G. Karakiulakis. The ‘sweet’ and ‘bitter’ involvement of glycosaminoglycans in lung diseases: pharmacotherapeutic relevance. Br. J. Pharmacol. 157:1111–1127, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Petersen, T. H., E. A. Calle, M. B. Colehour, and L. E. Niklason. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195:222–231, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Petersen, T. H., E. A. Calle, L. Zhao, E. J. Lee, L. Gui, et al. Tissue-engineered lungs for in vivo implantation. Science 329:538–541, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Pfister, R. R., J. L. Haddox, K. W. Lam, and K. M. Lank. Preliminary characterization of a polymorphonuclear leukocyte stimulant isolated from alkali-treated collagen. Invest. Ophthalmol. Vis. Sci. 29:955–962, 1988.

    CAS  PubMed  Google Scholar 

  67. Pierce, J. A. Age related changes in the fibrous proteins of the lungs. Arch. Environ. Health 6:50–54, 1963.

    Article  CAS  PubMed  Google Scholar 

  68. Pierce, J. A., and J. B. Hocott. Studies on the collagen and elastin content of the human lung. J. Clin. Invest. 39:8–14, 1960.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Price, A. P., K. A. England, A. M. Matson, B. R. Blazar, and A. Panoskaltsis-Mortari. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A 16:2581–2591, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rieder, E., G. Seebacher, M. T. Kasimir, E. Eichmair, B. Winter, et al. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111:2792–2797, 2005.

    Article  PubMed  Google Scholar 

  71. Sannes, P. L. Differences in basement membrane-associated microdomains of type I and type II pneumocytes in the rat and rabbit lung. J. Histochem. Cytochem. 32:827–833, 1984.

    Article  CAS  PubMed  Google Scholar 

  72. Sawai, T., N. Usui, K. Sando, Y. Fukui, S. Kamata, et al. Hyaluronic acid of wound fluid in adult and fetal rabbits. J. Pediatr. Surg. 32:41–43, 1997.

    Article  CAS  PubMed  Google Scholar 

  73. Schor, S. L. Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 41:159–175, 1980.

    CAS  PubMed  Google Scholar 

  74. Serini, G., M. L. Bochaton-Piallat, P. Ropraz, A. Geinoz, L. Borsi, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J. Cell Biol. 142:873–881, 1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Shapiro, S. D., S. K. Endicott, M. A. Province, J. A. Pierce, and E. J. Campbell. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87:1828–1834, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Sokocevic, D., N. R. Bonenfant, D. E. Wagner, Z. D. Borg, M. J. Lathrop, et al. The effect of age and emphysematous and fibrotic injury on the re-cellularization of de-cellularized lungs. Biomaterials 34:3256–3269, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Sorokin, L. M., F. Pausch, M. Frieser, S. Kroger, E. Ohage, et al. Developmental regulation of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation. Dev. Biol. 189:285–300, 1997.

    Article  CAS  PubMed  Google Scholar 

  78. Soucy, P. A., and L. H. Romer. Endothelial cell adhesion, signaling, and morphogenesis in fibroblast-derived matrix. Matrix Biol. 28:273–283, 2009.

    Article  CAS  PubMed  Google Scholar 

  79. Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 200:448–464, 2003.

    Article  CAS  PubMed  Google Scholar 

  80. Stone, K. C., R. R. Mercer, P. Gehr, B. Stockstill, and J. D. Crapo. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol. 6:235–243, 1992.

    Article  CAS  PubMed  Google Scholar 

  81. Sugihara, T., C. J. Martin, and J. Hildebrandt. Length-tension properties of alveolar wall in man. J. Appl. Physiol. 30:874–878, 1971.

    CAS  PubMed  Google Scholar 

  82. Suki, B. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J. Cell. Physiol. 229:1134–1140, 2014.

    Article  CAS  PubMed  Google Scholar 

  83. Suki, B., D. Stamenovic, and R. Hubmayr. Lung parenchymal mechanics. Compr. Physiol. 1:1317–1351, 2011.

    PubMed Central  PubMed  Google Scholar 

  84. Tee, S. Y., J. Fu, C. S. Chen, and P. A. Janmey. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J . 100:L25–L27, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Toworfe, G. K., R. J. Composto, C. S. Adams, I. M. Shapiro, and P. Ducheyne. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. 71A:449–461, 2004.

    Article  CAS  Google Scholar 

  86. Tsuchiya, T., J. L. Balestrini, J. Mendez, E. A. Calle, L. Zhao, et al. Influence of pH on Extracellular Matrix Preservation During Lung Decellularization. Tissue Eng. Part C Methods, 2014. doi:10.1089/ten.tec.2013.0492.

  87. Tsukahara, H., E. Noiri, M. Z. Jiang, M. Hiraoka, and M. Mayumi. Role of nitric oxide in human pulmonary microvascular endothelial cell adhesion. Life Sci. 67:1–11, 2000.

    Article  CAS  PubMed  Google Scholar 

  88. Tuan, T. L., and F. Grinnell. Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts. J. Cell. Physiol. 140:577–583, 1989.

    Article  CAS  PubMed  Google Scholar 

  89. van Kuppevelt, T. H., F. P. Cremers, J. G. Domen, H. M. van Beuningen, A. J. van den Brule, et al. Ultrastructural localization and characterization of proteoglycans in human lung alveoli. Eur. J. Cell Biol. 36:74–80, 1985.

    PubMed  Google Scholar 

  90. Vorotnikova, E., D. McIntosh, A. Dewilde, J. Zhang, J. E. Reing, et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 29:690–700, 2010.

    Article  CAS  PubMed  Google Scholar 

  91. Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Wagner, D. E., N. R. Bonenfant, C. S. Parsons, D. Sokocevic, E. M. Brooks, et al. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 35:3281–3297, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Wallis, J. M., Z. D. Borg, A. B. Daly, B. Deng, B. A. Ballif, et al. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng. Part C Methods. 18:420–432, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Wang, H. J., J. Pieper, R. Schotel, C. A. van Blitterswijk, and E. N. Lamme. Stimulation of skin repair is dependent on fibroblast source and presence of extracellular matrix. Tissue Eng. 10:1054–1064, 2004.

    Article  CAS  PubMed  Google Scholar 

  95. Yuan, H., S. Kononov, F. S. Cavalcante, K. R. Lutchen, E. P. Ingenito, et al. Effects of collagenase and elastase on the mechanical properties of lung tissue strips. J. Appl. Physiol. 89:3–14, 2000.

    CAS  PubMed  Google Scholar 

  96. Zheng, M. H., J. Chen, Y. Kirilak, C. Willers, J. Xu, et al. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J. Biomed. Mater. Res. B Appl. Biomater. 73:61–67, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant NIH U01 HL111016-01 (to LEN). L.E.N. has a financial interest in Humacyte, Inc, a regenerative medicine company. Humacyte did not fund these studies, and Humacyte did not affect the design, interpretation, or reporting of any of the experiments herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura E. Niklason.

Additional information

Associate Editor Rosemarie Hunziker oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balestrini, J.L., Niklason, L.E. Extracellular Matrix as a Driver for Lung Regeneration. Ann Biomed Eng 43, 568–576 (2015). https://doi.org/10.1007/s10439-014-1167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1167-5

Keywords

Navigation