Skip to main content

Advertisement

Log in

Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body’s movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

LSOT:

Locomotor Sensory Organization Test

SOT:

Sensory Organization Test

netCOP:

net Center of Pressure

PI:

Performance Index

References

  1. Alexander, M. S., B. W. Flodin, and D. S. Marigold. Prism adaptation and generalization during visually guided locomotor tasks. J. Neurophysiol. 106(2):860–871, 2011.

    Article  PubMed  Google Scholar 

  2. Altman, A. R., D. S. Reisman, J. S. Higginson, and I. S. Davis. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation. Gait Posture. 35:287–291, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Berard, J. R., J. Fung, and A. Lamontagne. Evidence for the use of rotational optic flow cues for locomotor steering in healthy older adults. J. Neurophysiol. 106(3):1089–1096, 2011.

    Article  PubMed  Google Scholar 

  4. Black, F. O., C. L. Shupert, F. B. Horak, and L. M. Nashner. Abnormal postural control associated with peripheral vestibular disorders. Prog. Brain Res. 76:263–275, 1988.

    Article  CAS  PubMed  Google Scholar 

  5. Black, F. O., C. L. Shupert, R. J. Peterka, and L. M. Nashner. Effects of unilateral loss of vestibular function on the vestibule-ocular reflex and postural control. Ann. Otol. Rhinol. Laryngol. 98(11):884–889, 1989.

    Article  CAS  PubMed  Google Scholar 

  6. Callisaya, M. L., L. Blizzard, J. L. McGinley, M. D. Schmidt, and V. K. Srikanth. Sensorimotor factors affecting gait variability in older people—a population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 65(4):386–392, 2010.

    Article  PubMed  Google Scholar 

  7. Cavanaugh, J. T., K. M. Guskiewicz, C. Giuliani, S. Marshall, V. Mercer, and N. Stergiou. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br. J. Sports Med. 9(11):805–811, 2005.

    Article  Google Scholar 

  8. Chung, M. J., and M. J. Wang. The change of gait parameters during walking at different percentage of preferred waling speed for healthy adults aged 20-60 years. Gait Posture. 31(1):131–135, 2010.

    Article  PubMed  Google Scholar 

  9. Day, B. L., and J. Cole. Vestibular-evoked postural responses in the absence of somatosensory information. Brain 125(Pt 9):2081–2088, 2002.

    Article  PubMed  Google Scholar 

  10. Deshpande, N., L. Ferrucci, J. Metter, K. A. Faulkner, E. Strotmeyer, S. Satterfield, A. Schwartz, and E. Simonsick. Association of lower limb cutaneous sensitivity with gait speed in the elderly: the health ABC study. Am. J. Phys. Med. Rehabil. 87(11):921–928, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Deshpande, N., E. J. Metter, and L. Ferrucci. Validity of clinically derived cumulative somatosensory impairment index. Arch. Phys. Med. Rehabil. 91(2):226–232, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Donaldson, C. J., M. E. Hoffer, B. J. Balough, and K. R. Gottshall. Prognostic assessments of medical therapy and vestibular testing in post-traumatic migraine-associated dizziness patients. Otolaryngol. Head Neck Surg. 143(6):820–825, 2010.

    Article  PubMed  Google Scholar 

  13. Ernst, M. O., and M. S. Banks. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Fetsch, C. R., A. H. Turner, G. C. DeAngelis, and D. E. Angelaki. Dynamic reweighting of visual and vestibular cues during self-motion perception. J. Neurosci. 29(49):15601–15612, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gruhn, M., L. Zehl, and A. Buschges. Straight walking and turning on a slippery surface. J. Exp. Biol. 212:194–209, 2009.

    Article  PubMed  Google Scholar 

  16. Ishikawa, K., M. Edo, M. Yokomizo, N. Terada, Y. Okamoto, and K. Togawa. Analysis of gait in patients with peripheral vestibular disorders. ORL J. Otorhinolaryngol. Relat. Specialties 56(6):325–330, 1994.

    Article  CAS  Google Scholar 

  17. Ishikawa, K., M. Edo, M. Yokomizo, and K. Togawa. Characteristics of human gait related variables in association with vestibular system disorders. Acta Otolaryngol. Suppl. 520(Pt 1):199–201, 1995.

    Article  PubMed  Google Scholar 

  18. Jacobson, G. P., and C. W. Newman. The development of the Dizziness Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 116:424–427, 1990.

    Article  CAS  PubMed  Google Scholar 

  19. Jordan, K., J. H. Challis, and K. M. Newell. Walking speed influences on gait cycle variability. Gait Posture. 26(1):128–134, 2007.

    Article  PubMed  Google Scholar 

  20. Jordan, K., and K. M. Newell. The structure of variability in human walking and running is speed-dependent. Exerc. Sport Sci. Rev. 36(4):200–204, 2008.

    Article  PubMed  Google Scholar 

  21. Kiss, R. M. Comparison between kinematic and ground reaction force techniques for determining gait events during treadmill walking at different speeds. Med. Eng. Phys. 32(6):662–667, 2010.

    Article  PubMed  Google Scholar 

  22. Mawase, F., T. Haizler, S. Bar-Haim, and A. Karniel. Kinetic adaptation during locomotion on a split-belt treadmill. J. Neurophysiol. 109:2216–2227, 2013.

    Article  PubMed  Google Scholar 

  23. Mergner, T., G. Schweigart, L. Fennell, and C. Maurer. Posture control in vestibular-loss patients. Ann. N. Y. Acad. Sci. 1164:206–215, 2009.

    Article  PubMed  Google Scholar 

  24. Mickelborough, J., M. L. van der Linden, J. Richards, and A. R. Ennos. Validity and reliability of a kinematic protocol for determining foot contact events. Gait Posture. 11(1):32–37, 2000.

    Article  CAS  PubMed  Google Scholar 

  25. Nocera, J., M. Horvat, and C. T. Ray. Effects of home-based exercise on postural control and sensory organization in individuals with Parkinson disease. Parkinsonism Relat. Disord. 15(10):742–745, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  26. O’Conner, S., and A. D. Kuo. Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102:1411–1419, 2009.

    Article  Google Scholar 

  27. Parietti-Winkler, C., G. C. Gauchard, C. Simon, and P. P. Perrin. Pre-operative vestibular pattern and balance compensation after vestibular schwannoma surgery. Neuroscience 72:285–292, 2011.

    Article  Google Scholar 

  28. Patla, A. E., S. D. Prentice, S. Rietdyk, F. Allard, and C. Martin. What guides the selection of alternate foot placement during locomotion in humans? Exp. Brain Res. 128(4):441–450, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Patla, A. E., S. S. Tomescu, and M. G. Ishac. What visual information is used for navigation around obstacles in a cluttered environment? Can. J. Physiol. Pharmacol. 82(8–9):682–692, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Pearson, K. G. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5:786–791, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Peterka, R. J. Sensorimotor integration in human postural control. J. Neurophysiol. 88(3):1097–1118, 2002.

    CAS  PubMed  Google Scholar 

  32. Rossi-Izquierdo, M., S. Santos-Pérez, and A. Soto-Varela. What is the most effective vestibular rehabilitation technique in patients with unilateral peripheral vestibular disorders? Eur. Arch. Otorhinolaryngol. 268(11):1569–1574, 2011.

    Article  PubMed  Google Scholar 

  33. Smania, N., A. Picelli, M. Gandolfi, A. Fiaschi, and M. Tinazzi. Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: a before/after pilot study. Neurol. Sci. 29(5):313–319, 2008.

    Article  PubMed  Google Scholar 

  34. Thies, S. B., J. K. Richardson, and J. A. Ashton-Miller. Effects of surface irregularity and lighting on step variability during gait: a study in healthy young and older women. Gait Posture. 22(1):26–31, 2005.

    Article  PubMed  Google Scholar 

  35. Thies, S. B., J. K. Richardson, T. Demott, and J. A. Ashton-Miller. Influence of an irregular surface and low light on the step variability of patients with peripheral neuropathy during level gait. Gait Posture. 22(1):40–45, 2005.

    Article  PubMed  Google Scholar 

  36. Wardman, D. L., J. L. Taylor, and R. C. Fitzpatrick. Effect of galvanic vestibular stimulation on human posture and perception while standing. J. Physiol. 551(Pt 3):1033–1042, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zeni, Jr., J. A., J. G. Richards, and J. S. Higginson. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 27(4):710–714, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NASA EPSCoR NNX11AM06A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chien, J.H., Eikema, DJ.A., Mukherjee, M. et al. Locomotor Sensory Organization Test: A Novel Paradigm for the Assessment of Sensory Contributions in Gait. Ann Biomed Eng 42, 2512–2523 (2014). https://doi.org/10.1007/s10439-014-1112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1112-7

Keywords

Navigation