Skip to main content

Advertisement

Log in

Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this work we employ integer- and fractional-order viscoelastic models in a one-dimensional blood flow solver, and study their behavior by presenting an in-silico study on a large patient-specific cranial network. The use of fractional-order models is motivated by recent experimental studies indicating that such models provide a new flexible alternative to fitting biological tissue data. This is attributed to their inherent ability to control the interplay between elastic energy storage and viscous dissipation by tuning a single parameter, the fractional order α, as well as to account for a continuous viscoelastic relaxation spectrum. We perform simulations using four viscoelastic parameter data-sets aiming to compare different viscoelastic models and highlight the important role played by the fractional order. Moreover, we carry out a detailed global stochastic sensitivity analysis study to quantify uncertainties of the input parameters that define each wall model. Our results confirm that the effect of fractional models on hemodynamics is primarily controlled by the fractional order, which affects pressure wave propagation by introducing viscoelastic dissipation in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alastruey, J., A. W. Khir, K. S. Matthys, P. Segers, S. J. Sherwin, P. R. Verdonck, K. H. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44:2250–2258, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Atanacković, T. M., S. Konjik, L. Oparnica, and D. Zorica. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal. 2011:1–32, 2011.

  3. Bia, D., I. Aguirre, Y. Zócalo, L. Devera, E. Cabrera Fischer, and R. L. Armentano. Regional differences in viscosity, elasticity, and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure–diameter relationship. Rev. Esp. Cardiol. (Engl. Ed.) 58:167–174, 2005.

    Google Scholar 

  4. Čanić, S., C. J. Hartley, D. Rosenstrauch, J. Tambača, G. Guidoboni, and A. Mikelić. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34(4):575–592, 2006.

    Article  PubMed  Google Scholar 

  5. Craiem, D. O., and R. L. Armentano. A fractional derivative model to describe arterial viscoelasticity. Biorheology 44:251–263, 2007.

    PubMed  Google Scholar 

  6. Craiem, D. O., F. J. Rojo, J. M. Atienza, R. L. Armentano, and G. V. Guinea. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53:4543, 2008.

    Article  PubMed  Google Scholar 

  7. Craiem, D. O., F. J. Rojo, J. M. Atienza, G. V. Guinea, and R. L. Armentano. Fractional calculus applied to model arterial viscoelasticity. Latin Am. Appl. Res. 38:141–145, 2008.

    Google Scholar 

  8. DeVault, K., P. A. Gremaud, V. Novak, M. S. Olufsen, G. Vernieres, and P. Zhao. Blood flow in the circle of willis: modeling and calibration. SIAM Multiscale Model. Simul. 7(2):888–909, 2008.

    Article  Google Scholar 

  9. Doehring, T. C., A. D. Freed, E. O. Carew, I. Vesely, et al. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J. Biomech. Eng.-Trans. ASME 127:700, 2005.

    Google Scholar 

  10. Eringen, A. C. Mechanics of Continua. Huntington, NY: Robert E. Krieger, 1980.

  11. Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, Vol. 1. New York: Springer, 2009.

  12. Fung, Y. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

  13. Grinberg, L., E. Cheever, T. Anor, J. R. Madsen, and G. E. Karniadakis. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study. Ann. Biomed. Eng. 39:297–309, 2011.

    Article  PubMed  CAS  Google Scholar 

  14. López-Fernández, M., C. Lubich, and A. Schädle. Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30:1015–1037, 2008.

    Article  Google Scholar 

  15. Lubich, C., and A. Schädle. Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24:161–182, 2002.

    Article  Google Scholar 

  16. Lundkvist, A., E. Lilleodden, W. Siekhaus, J. Kinney, L. Pruitt, and M. Balooch. Viscoelastic properties of healthy human artery measured in saline solution by AFM-based indentation technique. In: MRS Proceedings, Vol. 436, 1996.

  17. Magin, R. L. Fractional Calculus in Bioengineering. Redding: Begell House, 2006.

  18. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. London: Imperial College Press, 2010.

  19. Näsholm, S. P., and S. Holm. On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16:26–50, 2013.

    Article  Google Scholar 

  20. Podlubny, I. Fractional Differential Equations, Vol. 198. San Diego: Academic Press, 1998.

  21. Podlubny, I. Calculation of the Mittag-Leffler function with desired accuracy. http://www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function, 2012. Accessed 12 September 2012.

  22. Raghu, R., I. E. Vignon-Clementel, C. A. Figueroa, and C. A. Taylor. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow. J. Biomech. Eng.-Trans. ASME 133(8):081003–081003, 2011.

    Article  Google Scholar 

  23. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:208, 2009.

    Article  CAS  Google Scholar 

  24. Reymond, P., F. Perren, F. Lazeyras, and N. Stergiopulos. Patient-specific mean pressure drop in the systemic arterial tree, a comparison between 1-D and 3-D models. J. Biomech. 45(15):2499–2505, 2012.

    Article  PubMed  Google Scholar 

  25. Sherwin, S. J., V. Franke, J. Peiro, and K. H. Parker. One-dimensional modelling of a vascular network in space–time variables. J. Eng. Math. 47:217–250, 2012.

    Article  Google Scholar 

  26. Shu, C. W. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6):1073–1084, 1988.

    Article  Google Scholar 

  27. Smith, N. P., A. J. Pullan, and P. J. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2001.

    Article  Google Scholar 

  28. Steele, B. N., D. Valdez-Jasso, M. A. Haider, and M. S. Olufsen. Predicting arterial flow and pressure dynamics using a 1D fluid dynamics model with a viscoelastic wall. SIAM J. Appl. Math. 71(4):1123–1143, 2011.

    Article  Google Scholar 

  29. Valdez-Jasso, D., D. Bia, Y. Zócalo, R. L. Armentano, M. Haider, and M. Olufsen. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure–area dynamics under in vivo and ex vivo conditions. Ann. Biomed. Eng. 39(5):1–19, 2011.

    Google Scholar 

  30. Witthoft, A., and G. E. Karniadakis. A bidirectional model for communication in the neurovascular unit. J. Theor. Biol. 311:80–93, 2012.

    Article  PubMed  Google Scholar 

  31. Xiu, D., and D. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24:619–644, 2002.

    Article  Google Scholar 

  32. Yang, X., M. Choi, G. Lin, and G. E. Karniadakis. Adaptive anova decomposition of stochastic incompressible and compressible flows. J. Comput. Phys. 231:1587–1614, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4), the NSF Directorate of Mathematical Sciences (DMS), and the DOE/INCITE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em. Karniadakis.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdikaris, P., Karniadakis, G.E. Fractional-Order Viscoelasticity in One-Dimensional Blood Flow Models. Ann Biomed Eng 42, 1012–1023 (2014). https://doi.org/10.1007/s10439-014-0970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0970-3

Keywords

Navigation