Skip to main content

Advertisement

Log in

Flow Perfusion Co-culture of Human Mesenchymal Stem Cells and Endothelial Cells on Biodegradable Polymer Scaffolds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we investigated the effect of flow perfusion culture on the mineralization of co-cultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). Osteogenically precultured hMSCs were seeded onto electrospun scaffolds in monoculture or a 1:1 ratio with HUVECs, cultured for 7 or 14 days in osteogenic medium under static or flow perfusion conditions, and the resulting constructs were analyzed for cellularity, alkaline phosphatase (ALP) activity and calcium content. In flow perfusion, constructs with monocultures of hMSCs demonstrated higher cellularity and calcium content, but lower ALP activity compared to corresponding static controls. ALP activity was enhanced in co-cultures under flow perfusion conditions, compared to hMSCs alone; however unlike the static controls, the calcium content of the co-cultures in flow perfusion was not different from the corresponding hMSC monocultures. The data suggest that co-cultures of hMSCs and HUVECs did not contribute to enhanced mineralization compared to hMSCs alone under the flow perfusion conditions investigated in this study. However, flow perfusion culture resulted in an enhanced spatial distribution of cells and matrix compared to static cultures, which were limited to a thin surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bancroft, G. N., V. I. Sikavitsas, J. Van Den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99(20):12600–12605, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bjerre, L., C. E. Bunger, M. Kassem, and T. Mygind. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 29(17):2616–2627, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Bulnheim, U., P. Muller, H. G. Neumann, K. Peters, R. E. Unger, C. J. Kirkpatrick, and J. Rychly. Endothelial cells stimulate osteogenic differentiation of mesenchymal stem cells on calcium phosphate scaffolds. J. Tissue Eng. Regen. Med. 2012. doi:10.1002/term.1590.

    PubMed  Google Scholar 

  4. Cartmell, S. H., B. D. Porter, A. J. Garcia, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9(6):1197–1203, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Hypoxia and flow perfusion modulate proliferation and gene expression of articular chondrocytes on porous scaffolds. AIChE J. 2012. doi:10.1002/aic.13958.

    Google Scholar 

  6. Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Design of a high-throughput flow perfusion bioreactor system for tissue engineering. Tissue Eng. Part C Methods 18(10):817–820, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Datta, N., Q. P. Pham, U. Sharma, V. I. Sikavitsas, J. A. Jansen, and A. G. Mikos. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc. Natl. Acad. Sci. USA 103(8):2488–2493, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Gershovich, J. G., R. L. Dahlin, F. K. Kasper, and A. G. Mikos. Enhanced osteogenesis in co-cultures with human mesenchymal stem cells and endothelial cells on polymeric microfiber scaffolds. Tissue Eng. Part A 2013. doi:10.1089/ten.TEA.2013.0256.

    PubMed  Google Scholar 

  10. Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22(11):1279–1288, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Grayson, W. L., S. Bhumiratana, C. Cannizzaro, P. H. G. Chao, D. P. Lennon, A. I. Caplan, and G. Vunjak-Novakovic. Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng. Part A 14(11):1809–1820, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Grellier, M., L. Bordenave, and J. Amedee. Cell-to-cell communication between osteogenic and endothelial lineages: Implications for tissue engineering. Trends Biotechnol. 27(10):562–571, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36(12):1978–1991, 2008.

    Article  PubMed  Google Scholar 

  14. Holtorf, H. L., J. A. Jansen, and A. G. Mikos. Flow perfusion culture induces the osteoblastic differentiation of marrow stromal cell-scaffold constructs in the absence of dexamethasone. J. Biomed. Mater. Res. Part A 72A(3):326–334, 2005.

    Article  CAS  Google Scholar 

  15. Holtorf, H. L., N. Datta, J. A. Jansen, and A. G. Mikos. Scaffold mesh size affects the osteoblastic differentiation of seeded marrow stromal cells cultured in a flow perfusion bioreactor. J. Biomed. Mater. Res. Part A 74A(2):171–180, 2005.

    Article  CAS  Google Scholar 

  16. Inoguchi, H., T. Tanaka, Y. Maehara, and T. Matsuda. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials 28(3):486–495, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36(1):17–28, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, E. J., and L. E. Niklason. A novel flow bioreactor for in vitro microvascularization. Tissue Eng. Part C Methods 16(5):1191–1200, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li, Y. S., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38(10):1949–1971, 2005.

    Article  PubMed  Google Scholar 

  20. Liao, J., X. Guo, D. Nelson, F. K. Kasper, and A. G. Mikos. Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor. Acta Biomater. 6(7):2386–2393, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ma, J. L., J. J. J. P. Van Den Beucken, F. Yang, S. K. Both, F. Z. Cui, J. L. Pan, and J. A. Jansen. Coculture of osteoblasts and endothelial cells: Optimization of culture medium and cell ratio. Tissue Eng. Part C Methods 17(3):349–357, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Meretoja, V. V., R. L. Dahlin, F. K. Kasper, and A. G. Mikos. Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 33(27):6362–6369, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nishi, M., R. Matsumoto, J. Dong, and T. Uemura. Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 101A(2):421–427, 2013.

    Article  CAS  Google Scholar 

  25. Pham, Q. P., U. Sharma, and A. G. Mikos. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Rotenberg, M. Y., E. Ruvinov, A. Armoza, and S. Cohen. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs. Lab Chip 12(15):2696–2703, 2012.

    Article  CAS  PubMed  Google Scholar 

  28. Sellgren, K. L., and T. Ma. Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 6(1):49–59, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Shi, S., and S. Gronthos. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18(4):696–704, 2003.

    Article  PubMed  Google Scholar 

  30. Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100(25):14683–14688, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Usami, K., H. Mizuno, K. Okada, Y. Narita, M. Aoki, T. Kondo, D. Mizuno, J. Mase, H. Nishiguchi, H. Kagami, and M. Ueda. Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. J. Biomed. Mater. Res. Part A 90(3):730–741, 2009.

    Article  Google Scholar 

  32. Wang, D. S., M. Miura, H. Demura, and K. Sato. Anabolic effects of 1,25-dihydroxyvitamin d3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology 138(7):2953–2962, 1997.

    CAS  PubMed  Google Scholar 

  33. Yu, H., P. J. Vandevord, L. Mao, H. W. Matthew, P. H. Wooley, and S. Y. Yang. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30(4):508–517, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Space Biomedical Research Institute Postdoctoral Fellowship Program through NCC 9-58 (JGG) and the National Institutes of Health (R01 AR057083) (AGM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios G. Mikos.

Additional information

Associate Editor Tzung Hsiai oversaw the review of this article.

Rebecca L. Dahlin and Julia G. Gershovich contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlin, R.L., Gershovich, J.G., Kasper, F.K. et al. Flow Perfusion Co-culture of Human Mesenchymal Stem Cells and Endothelial Cells on Biodegradable Polymer Scaffolds. Ann Biomed Eng 42, 1381–1390 (2014). https://doi.org/10.1007/s10439-013-0862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0862-y

Keywords

Navigation