Skip to main content
Log in

Nanoparticle Deposition onto Biofilms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We develop a mathematical model of nanoparticles depositing onto and penetrating into a biofilm grown in a parallel-plate flow cell. We carry out deposition experiments in a flow cell to support the modeling. The modeling and the experiments are motivated by the potential use of polymer nanoparticles as part of a treatment strategy for killing biofilms infecting the deep passages in the lungs. In the experiments and model, a fluid carrying polymer nanoparticles is injected into a parallel-plate flow cell in which a biofilm has grown over the bottom plate. The model consists of a system of transport equations describing the deposition and diffusion of nanoparticles. Standard asymptotic techniques that exploit the aspect ratio of the flow cell are applied to reduce the model to two coupled partial differential equations. We perform numerical simulations using the reduced model. We compare the experimental observations with the simulation results to estimate the nanoparticle sticking coefficient and the diffusion coefficient of the nanoparticles in the biofilm. The distributions of nanoparticles through the thickness of the biofilm are consistent with diffusive transport, and uniform distributions through the thickness are achieved in about four hours. Nanoparticle deposition does not appear to be strongly influenced by the flow rate in the cell for the low flow rates considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abramoff, M. D., P. J. Magelhaes, and S. J. Ram. Image processing with imagej. J. Biophotonics 11:36–42, 2004.

    Google Scholar 

  2. Asgharian, B., W. Hofmann, and R. Bergmann. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34(4):332–339, 2001.

    CAS  Google Scholar 

  3. Bolte, S., and F. P. Cordeliéres. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224:213–232, 2006.

    Article  PubMed  CAS  Google Scholar 

  4. Bouwer, E. J. Theoretical investigation of particle deposition in biofilm systems. Water Res. 21(12):1489–1498, 1987.

    Article  CAS  Google Scholar 

  5. Cogan, N. G., and J. P. Keener. The role of the biofilm matrix in structural development. Math. Med. Biol. A J. IMA 21(2):147–166, 2004.

    Article  CAS  Google Scholar 

  6. Costerton, J., S. Stewart, and E. Greenberg. Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Dailey, L. A., E. Kleemann, M. Wittmar, T. Gessler, T. Schmehl, C. Roberts, W. Seeger, and T. Kissel. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm. Res. 20:2011–2020, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Dailey, L. A., T. Schmehl, T. Gessler, M. Wittmar, F. Grimminger, W. Seeger, and T. Kissel. Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Controlled Release 86:131–144, 2003.

    Article  CAS  Google Scholar 

  9. Desai, T. R., R. E. W. Hancock, and W. H. Finlay. A facile method of delivery of liposomes by nebulization. J. Controlled Release 84:69–78, 2002.

    Article  CAS  Google Scholar 

  10. Ditto, A. DNA-LPEI complexes encapsulation in LTP nanospheres as a non-viral gene therapy vector. Technical report, Akron: Biomedical Engineering, The University of Akron, 2006.

  11. Ditto, A. J., P. N. Shah, S. T. Lopina, and Y. H. Yun. Nanospheres formulated from l-tyrosine polyphosphate as a potential intracellular delivery device. Int. J. Pharm. 368(1–2):199–206, 2009.

    Article  PubMed  CAS  Google Scholar 

  12. Drury, W., P. Stewart, and W. Characklis. Transport of 1 micrometer latex particles in pseudomonas aeruginosa biofilms. Biotechnol. Bioeng. 42(1):111–117, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Drury, W. J., W. G. Characklis, and P. S. Stewart. Interactions of 1 μm latex particles with pseudomonas aeruginosa biofilms. Water Res. 27(7):1119–1126, 1993.

    Article  CAS  Google Scholar 

  14. Emami, J., H. Hamishehkar, A. R. Najafabadi, K. Gilani, M. Minaiyan, H. Mahdavi, H. Mirzadeh, A. Fakhari, and A. Nokhodchi. Particle size design of plga microspheres for potential pulmonary drug delivery using response surface methodology. J. Microencapsul. 26(1):1–8, 2009.

    Google Scholar 

  15. Ensign, L. M., R. Cone, and J. Hanes. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64(6):557–570, 2012.

    Google Scholar 

  16. Frijlink, H. W., and A. H. De Boer. Dry powder inhalers for pulmonary drug delivery. Expert Opinion On Drug Deliv. 1(1):67–86, 2004.

    Article  CAS  Google Scholar 

  17. Gibson, R., J. Burns, and B. Ramsey. Pathophysiology and management of respiratory infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168(8):918–951, 2003.

    Article  PubMed  Google Scholar 

  18. Griesenbach, U., S. Ferrari, D. M. Geddes, and E. W. Alton. Gene therapy progress and prospects: cystic fibrosis. Gene Ther. 9:1344–1350, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Gupta, A. S., and S. T. Lopina. L-tyrosine-based backbone-modified poly(amino acids). J. Biomater. Sci. Polym. Ed. 13(10):1093–1104, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Hall-Stoodley, L., J. W. Costerton, and P. Stoodley. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2):95–108, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Heyder, J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1(4):315–320, 2004.

    Article  PubMed  CAS  Google Scholar 

  22. Heydorn, A., B. K. Ersbøll, M. Hentzer, M.R. Parsek, M. Givskov, and S. Molin. Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2416, 2000.

    PubMed  CAS  Google Scholar 

  23. Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin. Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407, 2000.

    PubMed  CAS  Google Scholar 

  24. Hindi, K. M., A. J. Ditto, M. J. Panzner, D. A. Medvetz, C. E. Hovis, D. S. Han, J. K. Hilliard, J. B. Taylor, Y. H. Yun, C. L. Cannon, and W. J. Youngs. The antimicrobial efficacy of sustained release silver carbene complex-loaded l-tyrosine polyphosphate nanoparticles: characterization, in vitro and in vivo studies. Biomaterials 30:3771–3779, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Jackson, K., R. Keyser, and D. Wozniak. The role of biofilms in airway disease. Semin. Respir. Crit. Care Med. 24(6):663–670, 2003.

    Article  PubMed  Google Scholar 

  26. Katz, S., I. Adatia, E. Louca, K. Leung, T. Humpl, J. T. Reyes, and A. L. Coates. Nebulized therapies for childhood pulmonary hypertension: an in vitro model. Pediatr. Pulmonol. 41:666–673, 2006.

    Article  PubMed  Google Scholar 

  27. Kleemann, E., Dailey, H. G. Abdelhady, T. Gessler, T. Schmehl, C. J. Roberts, M. C. Davies, W. Seeger, and T. Kissel. Modified polyethyleneimines as non-viral gene delivery systems for aerosol gene therapy: investigations of the complex structure and stability during air-jet and ultrasonic nebulization. J. Controlled Release 100:437–450, 2004

    Article  CAS  Google Scholar 

  28. Koping-Hoggard, M., M. M. Issa, T. Kohler, K. M. Varum, and P. Artursson. A miniaturized nebulization catheter for improved gene delivery to the mouse lung. J. Gene Med. 7(9):1215–1222, 2005.

    Article  PubMed  Google Scholar 

  29. Lambiase, A., V. Raia, M. Pezzo, A. Sepe, V. Carnovale, and F. Rossano. Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect. Dis. 6(1):4, 2006.

    Google Scholar 

  30. Leid, J. G., A. J. Ditto, A. Knapp, P. N. Shah, B. D. Wright, R. Blust, L. Christensen, C. B. Clemons, J. P. Wilber, G. W. Young, A. G. Kang, M. J. Panzner, C. L. Cannon, Y. H. Yun, W. J. Youngs, N. M. Seckinger, and E. K. Cope. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J. Antimicrob. Chemother. 67(1):138–148, 2012.

    Google Scholar 

  31. Li, Z., C. Kleinstreuer, and Z. Zhang. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. J. Aerosol Sci. 38(6):625–644, 2007.

    Article  Google Scholar 

  32. Longest, P., and M. Oldham. Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J. Aerosol Sci. 39(1):48–70, 2008.

    Article  CAS  Google Scholar 

  33. P. W. Longest, S. Vinchurkar, and T. Martonen. Transport and deposition of respiratory aerosols in models of childhood asthma. J. Aerosol Sci. 37(10):1234–1257, 2006.

    Article  CAS  Google Scholar 

  34. Nassar, D., A. E. Stine, C. B. Clemons, K. M. Miller, J. P. Wilber, G. W. Young, M. C. Deblock, M. J. Panzner, W. J. Youngs, A. J. Ditto, Y. H. Yun, A. Milsted, J. G. Leid, and C. L. Cannon. Delivery of silver-based antimicrobials to the lung via nebulized nanoparticles. 2012, in preparation.

  35. Neubig, R. Penetration of nanoparticles into a biofilm from a bulk fluid. Masters Thesis. The University of Akron, 2011.

  36. Palmer, K. L., L. M. Aye, and M. Whiteley. Nutritional cues control pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189:8079–8087, 2007.

    Article  PubMed  CAS  Google Scholar 

  37. Pandey, R., A. Sharma, A. Zahoor, S. Sharma, G. K. Khuller, and B. Prasad. Poly (dl-lactide-co-glycolide) nanoparticle based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 52:981–986, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Panzner M.J., A. Deeraksa, A. Smith, B. D. Wright, K. M. Hindi, A. Kascatan-Nebioglu, A. G. Torres, B. M. Judy, C. E. Hovis, J. K. Hilliard, R. J. Mallett, E. Cope, D. M. Estes, C. L. Cannon, J. G. Leid, and W. J. Youngs. Synthesis and in vitro efficacy studies of silver carbene complexes on biosafety level 3 bacteria. Eur. J. Inorg. Chem. 13:1739–1745, 2009.

    Article  Google Scholar 

  39. Ramsey, B. Management of pulmonary disease in patients with cystic fibrosis (vol 335, pg 179, 1996). N. Engl. J. Med. 335(15):1167–1167, 1996.

    Google Scholar 

  40. Rudolph C., R. H. Muller, and J. Rosenecker. Jet nebulization of PEI/DNA polyplexes: physical stability and in vitro gene delivery efficiency. J. Gene Med. 4:66–74, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. Rybak, M. J. Pharmacodynamics: relation to antimicrobial resistance. Am. J. Infect. Control 34(5):S38–S45, 2006.

    Article  PubMed  Google Scholar 

  42. Searcy, K. E., A. I. Packman, E. R. Atwill, and T. Harter. Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 72(9):6242–6247, 2006.

    Article  PubMed  CAS  Google Scholar 

  43. Sen Gupta, A. S., and S. T. Lopina. Properties of l-tyrosine based polyphosphates pertinent to potential biomaterial applications. Polymer 46:2133–2140, 2005.

    Article  CAS  Google Scholar 

  44. Soppimath, K. S., T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski. Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70:1–20, 2001.

    Article  CAS  Google Scholar 

  45. Stewart, P., and J. Costerton. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Stine, A. E., D. Nassar, C. B. Clemons, K. M. Miller, J. P. Wilber, G. W. Young, W. J. Youngs, Y. H. Yun, A. Milsted, J. G. Leid, and C. L. Cannon. Modeling the response of a biofilm to silver-based antimicrobial. 2012, in preparation.

  47. Sufya, N., D. Allsion, and P. Gilbert. Clonal variation in maximum specific growth rate and susceptibility towards antimicrobials. J. Appl. Microbiol. 95:1261–1267, 2003.

    Article  PubMed  CAS  Google Scholar 

  48. Suh, J., K. Choy, S. Lai, J. Suk, B. Tang, S. Prabhu, J. Hanes. Pegylation of nanoparticles improves their cytoplasmic transport. Int. J. Nanomed. 2(4):735–741, 2007.

    CAS  Google Scholar 

  49. Suk, J., S. Lai, Y. Wang, L. Ensign, P. Zeitlin, M. Boyle, and J. Hanes. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30(13):2591–2597, 2009.

    Article  PubMed  CAS  Google Scholar 

  50. Szomolay, B., I. Klapper, J. Dockery, and P. Stewart. Adaptive responses to antimicrobial agents in biofilms. Environ. Microbiol. 7(8):1186–1191, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Tang, B., M. Dawson, S. Lai, Y. Wang, J. Suk, M. Yang, P. Zeitlin, M. Boyle, J. Fu, and J. Hanes. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc. Natl. Acad. Sci. 106(46):19268–19273, 2009.

    Article  PubMed  CAS  Google Scholar 

  52. Tolker-Nielsen, T., and C. Sternberg. Growing and analyzing biofilms in flow chambers. Curr. Protoc. Microbiol. Chapter 1:Unit 1B.2, 2011.

  53. Vadolas, J., R. Williamson, and P. A. Ioannou. Gene therapy for inherited lung disorders: an insight into pulmonary defense. Pulm. Pharmacol. Ther. 15:61–72, 2002.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, Y., S. Lai, J. Suk, A. Pace, R. Cone, and J. Hanes. Addressing the peg mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. Ed. 47(50):9726–9729, 2008.

    Article  CAS  Google Scholar 

  55. Wloka, M., H. Rehage, H.-C. Flemming, and J. Wingender. Structure and rheological behaviour of the extracellular polymeric substance network of mucoid pseudomonas aeruginosa biofilms. Biofilms 2(4):275–283, 2005.

    Article  Google Scholar 

  56. Wong, J. P., H. Yang, K. L. Blasetti, G. Schnell, J. Conley, and L. N. Schofield. Liposome delivery of ciprofloxacin against intracellular francisella tularensis infection. J. Controlled Release 92:265–273, 2003.

    Article  CAS  Google Scholar 

  57. Xi, J., and P. Longest. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35(4):560–581, 2007

    Article  PubMed  Google Scholar 

  58. Yang, L., K. B. Barken, M. E. Skindersoe, A. B. Christensen, M. Givskov, and T. Tolker-Nielsen. Effects of iron on DNA release and biofilm development by pseudomonas aeruginosa. Microbiology 153:1318–1328, 2007.

    Article  PubMed  CAS  Google Scholar 

  59. Yoon, S., R. Hennigan, G. Hilliard, U. Ochsner, K. Parvatiyar, M. Kamani, H. Allen, T. DeKievit, P. Gardner, U. Schwab, J. Rowe, B. Iglewski, T. McDermott, R. Mason, D. Wozniak, R. Hancock, M. Parsek, T. Noah, R. Boucher, and D. Hassett. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell 3(4):593–603, 2002.

    Article  PubMed  CAS  Google Scholar 

  60. Youngs, W. J., C. A. Tessier, J. C. Garrison, C. A. Quezada, A. Melaiye, S. Durmus, M. J. Panzner, and A. Kascatan-Nebioglu. Medicinal applications of metal complexes of n-heterocyclic carbenes. In: Medicinal Inorganic Chemistry, edited by J. Sessler, and S. Lippard, vol. 903. 2005, pp. 414–427.

  61. Yun, Y. H., H. Jiang, R. Chan, and W. Chen. Sustained release of PEG-g-chitosan complexed dna from poly(lactide-co-glycolide). J. Biomater. Sci. Polym. Ed. 16(11):1359–1378, 2005.

    Article  PubMed  CAS  Google Scholar 

  62. Zacarias, G., C. Ferreira, and J. Velasco-Hernandez. Porosity and tortuosity relations as revealed by a mathematical model of biofilm structure. J. Theor. Biol. 233:245–251, 2005.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang, T., N. Cogan, and Q. Wang. Phase field models for biofilms. I. Theory and one-dimensional simulations. SIAM J. Appl. Math. 69(3):641–669, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant RO1 GM086895 and the Akron Research Commercialization Corporation. The authors of this article are members of The Center for Silver Therapeutics Research at The University of Akron. The Pseudomonas aeruginosa strain PAO1 tagged with gfp were a generous gift from Dr. Sren Molin. The authors thank the reviewers for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Wilber.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.K., Neubig, R., Clemons, C.B. et al. Nanoparticle Deposition onto Biofilms. Ann Biomed Eng 41, 53–67 (2013). https://doi.org/10.1007/s10439-012-0626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0626-0

Keywords

Navigation