, Volume 39, Issue 11, pp 2759-2766

Novel Biodegradable Polycaprolactone Occlusion Device Combining Nanofibrous PLGA/Collagen Membrane for Closure of Atrial Septal Defect (ASD)

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The purpose of this report was to develop novel biodegradable occlusion devices for closure of atrial septal defects (ASD). To manufacture the biodegradable occluders, polycaprolactone (PCL) components were first fabricated by a lab-scale micro-injection molding machine. They were then assembled and hot-spot welded into double umbrella-like devices of 50 mm in diameter. A special mechanism at the axis of the occluder was designed to self-lock the occluder after the two umbrellas were expanded. Furthermore, a nanofibrous matrix of poly-d-l-lactide-glycolide (PLGA)/type I collagen blend was produced via electrospinning to develop biodegradable and biomimetic anti-shunt membranes for the occluders. Characterization of the biodegradable PCL occluders was carried out. PCL occluders exhibited mechanical properties comparable to that of commercially available Amplatzer occluders. The sealing capability of biodegradable occluders was found superior to that of Amplatzer occluders. In addition, the cell attachment and spreading of endothelial cells seeded on the PLGA/collagen nanofibrous matrix and the interaction between cells and PLGA/collagen nanofibers were studied. The nanofibrous membranes made of PLGA/collagen were very effective in promoting cell proliferation during culture.

Associate Editor Jennifer West oversaw the review of this article.