Skip to main content

Advertisement

Log in

A Novel Coronary Artery Bypass Graft Design of Sequential Anastomoses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the hemodynamics in a three-dimensional out-of-plane sequential bypass graft model is first investigated. Based on the advantageous flow characteristics observed within the side-to-side (STS) anastomosis in the sequential bypass graft simulation, a new CABG coupled-sequential anastomosis configuration is designed, entailing coupled STS and end-to-side (ETS) anastomotic components. In this new CABG design, the flow fields and distributions of various wall shear stress parameters within the STS and ETS anastomotic regions are studied, and compared to those of the conventional distal anastomosis, by means of computational fluid dynamics simulation of pulsatile Newtonian blood flow. Simulation results demonstrate that the new sequential anastomoses model provides: (i) a more uniform and smooth flow at the ETS anastomosis, without any stagnation point on the artery bed and vortex formation in the heel region of the ETS anastomosis within the coronary artery; (ii) a spare route for the blood flow to the coronary artery, to avoid re-operation in case of re-stenosis in either of the anastomoses; and (iii) improved distribution of hemodynamic parameters at the coronary artery bed and in the heel region of the ETS anastomosis, with more moderate shear stress indices. These advantages of the new design over the conventional ETS anastomosis are influenced by the occlusion ratio of the native coronary artery, and are most prominent when the proximal segment of the coronary artery is fully occluded. By varying the design parameters of the anastomotic angle and distance between the two anastomoses, the superior coupled STS–ETS anastomoses design is found to have the anastomotic angle of 30° and 30 mm distance between the two (STS and ETS) components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

Abbreviations

CABG:

Coronary artery bypass graft

CFD:

Computational fluid dynamic

ETS:

End-to-side

HP:

Hemodynamic parameter

IH:

Intimal hyperplasia

IT:

Intimal thickening

LAD:

Left anterior descending artery

LCA:

Left coronary artery

LCx:

Left circumflex artery

LMCA:

Left main coronary artery

OM:

Obtuse marginal

OSI:

Oscillatory shear index

RCA:

Right coronary artery

SV:

Sapheneous vein

SQA:

Sequential anastomosis/anastomoses

STS:

Side-to-side

TAWSS:

Time-averaged wall shear stress

TAWSSG:

Time-averaged wall shear stress gradient

WSS:

Wall shear stress

WSSG:

Wall shear stress gradient

References

  1. Archie, J. P., S. Hyun, C. Kleinstreuer, P. W. Longest, G. A. Truskey, and J. R. Buchanan. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29(1):1–64, 2001.

    PubMed  Google Scholar 

  2. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31(5):565–586, 1994.

    CAS  PubMed  Google Scholar 

  3. Bartley, T. D., J. C. Bigelow, and U. S. Page. Aortocoronary bypass grafting with multiple sequential anastomoses to a single vein. Arch. Surg. 105(6):915–917, 1972.

    CAS  PubMed  Google Scholar 

  4. Bates, C. J., D. M. O’Doherty, and D. Williams. Flow instabilities in a graft anastomosis: a study of the instantaneous velocity fields. Proc. Inst. Mech. Eng. H 215(6):579–587, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Berne, R. M., and M. N. Levy. Cardiovascular Physiology, 8th edn. St. Louis, MO: Mosby, 2001, p. 231.

    Google Scholar 

  6. Bertolotti, C., and V. Deplano. Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J. Biomech. 33(8):1011–1022, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Bonert, M., J. G. Myers, S. Fremes, J. Williams, and C. R. Ethier. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses. Ann. Biomed. Eng. 30(5):599–611, 2002.

    Article  PubMed  Google Scholar 

  8. Buchanan, J. R., C. Kleinstreuer, S. Hyun, and G. A. Truskey. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J. Biomech. 36(8):1185–1196, 2003.

    Article  CAS  PubMed  Google Scholar 

  9. Chua, L. P., W. F. Ji, C. M. Yu, T. M. Zhou, and Y. S. Tan. Particle image velocimetry measurements of three proximal anastomosis models under a pulsatile flow condition. Proc. Inst. Mech. Eng. H 222(3):249–263, 2008.

    CAS  PubMed  Google Scholar 

  10. Chua, L. P., T. M. Tong, and J. H. Zhou. Numerical simulation of steady flows in designed sleeve models at distal anastomoses. Int. Commun. Heat Mass Transfer 32:707–714, 2005.

    Article  Google Scholar 

  11. Chua, L. P., J. M. Zhang, S. C. M. Yu, D. N. Ghista, and Y. S. Tan. Numerical study on the pulsatile flow characteristics of proximal anastomotic models. Proc. Inst. Mech. Eng. H 219(5):361–379, 2005.

    CAS  PubMed  Google Scholar 

  12. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12(11):1254–1257, 1992.

    CAS  PubMed  Google Scholar 

  13. Dodge, J. T., B. G. Brown, E. L. Bolson, and H. T. Dodge. Intrathoracic spatial location of specified coronary segments on the normal human heart. Applications in quantitative arteriography, assessment of regional risk and contraction, and anatomic display. Circulation 78(5 I):1167–1180, 1988.

    PubMed  Google Scholar 

  14. Einav, S., J. Avidor, and B. Vidne. Haemodynamics of coronary artery-saphenous vein bypass. J. Biomed. Eng. 7(4):305–309, 1985.

    Article  CAS  PubMed  Google Scholar 

  15. Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30(4):461–471, 2002.

    Article  PubMed  Google Scholar 

  16. Ethier, C. R., D. A. Steinman, X. Zhang, S. R. Karpik, and M. Ojha. Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomech. 31(7):609–617, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Fei, D. Y., J. D. Thomas, and S. E. Rittgers. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study. J. Biomech. Eng. 116(3):331–336, 1994.

    Article  CAS  PubMed  Google Scholar 

  18. Flemma, R. J., W. D. Johnson, and D. Lepley. Triple aorto-coronary vein bypass as treatment for coronary insufficiency. Arch. Surg. 103(1):82–83, 1971.

    CAS  PubMed  Google Scholar 

  19. Furuse, A., E. H. Klopp, R. K. Brawley, and V. L. Gott. Hemodynamics of aorta-to-coronary artery bypass. Experimental and analytical studies. Ann. Thorac. Surg. 14(3):282–293, 1972.

    Article  CAS  PubMed  Google Scholar 

  20. Galjee, M. A., A. C. van Rossum, T. Doesburg, M. B. Hofman, T. H. Falke, and C. A. Visser. Quantification of coronary artery bypass graft flow by magnetic resonance phase velocity mapping. Magn. Reson. Imaging 14(5):485–493, 1996.

    Article  CAS  PubMed  Google Scholar 

  21. Galjee, M. A., A. C. van Rossum, T. Doesburg, M. J. van Eenige, and C. A. Visser. Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 93(4):660–666, 1996.

    CAS  PubMed  Google Scholar 

  22. Ganong, W. F. Review of Medical Physiology. Stamford, CT: Appleton & Lange, 1999.

    Google Scholar 

  23. Giddens, D., S. Zarins, and C. K. Glagov. Response of arteries to near-wall fluid dynamics behavior. Appl. Mech. Rev. 43(2):S98–S102, 1990.

    Article  Google Scholar 

  24. Grondin, C., and R. Limet. Sequential anastomoses in coronary artery grafting: technical aspects and early and late angiographic results. Ann. Thorac. Surg. 23:1–8, 1977.

    Article  CAS  PubMed  Google Scholar 

  25. Hakaim, A. G., M. N. Nalbandian, J. K. Heller, A. C. Chowla, and W. A. Oldenburg. Improved patency of prosthetic arteriovenous grafts with an acute anastomotic angle and flow diffuser. J. Vasc. Surg. 37(5):1032–1035, 2003.

    Article  PubMed  Google Scholar 

  26. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118(1):74–82, 1996.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes, P. E., and T. V. How. Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division. J. Biomech. Eng. 117(2):224–236, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Kakos, G. S., H. N. Oldham, S. H. Dixon, R. W. Davis, P. O. Hagen, and D. C. Sabiston. Coronary artery hemodynamics after aorto-coronary artery vein bypass. An experimental evaluation. J. Thorac. Cardiovasc. Surg. 63(6):849–853, 1972.

    CAS  PubMed  Google Scholar 

  29. Kerem, M., E. Sener, and O. Tasdemir. Long-term patency of sequential and individual saphenous vein coronary bypass grafts. Eur. J. Cardiovasc. Surg. 19:140–144, 2001.

    Article  Google Scholar 

  30. Kim, H. J., I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elem. Anal. Des. 46(6):514–525, 2010.

    Article  Google Scholar 

  31. Kleinstreuer, C., M. Lei, and J. P. Archie. Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector. J. Biomech. Eng. 118(4):506–510, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Kleinstreuer, C., M. Nazemi, and J. P. Archie. Hemodynamics analysis of a stenosed carotid bifurcation and its plaque-mitigating design. J. Biomech. Eng. 113(3):330–335, 1991.

    Article  CAS  PubMed  Google Scholar 

  33. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    CAS  PubMed  Google Scholar 

  34. Lei, M., C. Kleinstreuer, and G. A. Truskey. Numerical investigation and prediction of atherogenic sites in branching arteries. J. Biomech. Eng. 117(3):350–357, 1995.

    Article  CAS  PubMed  Google Scholar 

  35. Lei, M., C. Kleinstreuer, and G. A. Truskey. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med. Eng. Phys. 18(4):326–332, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuo, S., M. Tsuruta, M. Hayano, Y. Imamura, Y. Eguchi, T. Tokushima, and S. Tsuji. Phasic coronary artery flow velocity determined by Doppler flowmeter catheter in aortic stenosis and aortic regurgitation. Am. J. Cardiol. 62(13):917–922, 1988.

    Article  CAS  PubMed  Google Scholar 

  38. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3):207–214, 1926.

    Article  CAS  PubMed  Google Scholar 

  39. O’Neill, M. J., P. D. Wolf, T. K. O’Neill, R. M. Montesano, and J. A. Waldhausen. A rationale for the use of sequential coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 81(5):686–690, 1981.

    PubMed  Google Scholar 

  40. Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31(3):217–228, 1998.

    Article  CAS  PubMed  Google Scholar 

  41. Qiao, A., Y. Liu, S. Li, and H. Zhao. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts. J. Biol. Phys. 31:161–182, 2005.

    Article  Google Scholar 

  42. Sankaranarayanan, M., D. N. Ghista, L. P. Chua, T. Y. Seng, and G. S. Kassab. Analysis of blood flow in an out-of-plane CABG model. Am. J. Physiol. Heart Circ. Physiol. 291(1):H283–H295, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Sankaranarayanan, M., D. N. Ghista, L. P. Chua, Y. S. Tan, K. Sundaravadivelu, and G. S. Kassab. Blood flow in an out-of-plane aorto-left coronary sequential bypass graft. In: Computational Cardiovascular Mechanics: Modeling and Applications in Heart Failure, edited by J. M. Guccione, G. S. Kassab, and M. Ratcliffe. New York: Springer-Verlag, in press.

  44. Santamarina, A., E. Weydahl, J. Siegel, Jr, and J. Moore, Jr. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26(6):944–954, 1998.

    Article  CAS  PubMed  Google Scholar 

  45. Segers, P., N. Stergiopulos, N. Westerhof, P. Wouters, P. Kolh, and P. Verdonck. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J. Eng. Math. 47(3–4):185–199, 2003.

    Article  Google Scholar 

  46. Shahcheraghi, N., H. A. Dwyer, A. Y. Cheer, A. I. Barakat, and T. Rutaganira. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J. Biomech. Eng. 124(4):378–387, 2002.

    Article  CAS  PubMed  Google Scholar 

  47. Siouffi, M., V. Deplano, and R. Pélissier. Experimental analysis of unsteady flows through a stenosis. J. Biomech. 31(1):11–19, 1998.

    Article  CAS  PubMed  Google Scholar 

  48. Speziale, G. Competitive Flow and Steal Phenomenon in Coronary Surgery. Intraoperative Graft Patency Verification in Cardiac and Vascular Surgery. New York: Futura Publishing, 2001.

    Google Scholar 

  49. Suo, J., Y. Yang, J. Oshinski, A. Tannenbaum, J. Gruden, and D. Giddens. Flow patterns and wall shear stress distributions at atherosclerotic-prone sites in a human left coronary artery-an exploration using combined methods of CT and computational fluid dynamics. In: 26th Annual Int. Conf. IEEE EMBS, San Francisco, 2004.

  50. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.

    Article  Google Scholar 

  51. Waller, B., and R. Schlant. Anatomy of the Heart, Hurst’s the Heart. London: McGraw-Hill, pp. 84–86, 1986.

    Google Scholar 

  52. Wiesner, T. F., M. J. Levesque, E. Rooz, and R. M. Nerem. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses–II: Experimental comparison and parametric investigations. J. Biomech. Eng. 110(2):144–149, 1988.

    Article  CAS  PubMed  Google Scholar 

  53. Womersley, J. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553–563, 1955.

    CAS  PubMed  Google Scholar 

  54. Yasuura, K., Y. Takagi, Y. Ohara, Y. Takami, A. Matsuura, and H. Okamoto. Theoretical analysis of right gastroepiploic artery grafting to right coronary artery. Ann. Thorac. Surg. 69(3):728–731, 2000.

    Article  CAS  PubMed  Google Scholar 

  55. Zeng, D., Z. Ding, M. H. Friedman, and C. R. Ethier. Effects of cardiac motion on right coronary artery hemodynamics. Ann. Biomed. Eng. 31(4):420–429, 2003.

    Article  PubMed  Google Scholar 

  56. Zhang, J. M., L. P. Chua, D. N. Ghista, S. C. M. Yu, and Y. S. Tan. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model. Med. Biol. Eng. Comput. 46(7):689–699, 2008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leok Poh Chua.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabinejadian, F., Chua, L.P., Ghista, D.N. et al. A Novel Coronary Artery Bypass Graft Design of Sequential Anastomoses. Ann Biomed Eng 38, 3135–3150 (2010). https://doi.org/10.1007/s10439-010-0068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0068-5

Keywords

Navigation