Annals of Biomedical Engineering

, Volume 37, Issue 7, pp 1464–1473

Cell Death Discrimination with Raman Spectroscopy and Support Vector Machines

  • Georgios Pyrgiotakis
  • O. Erhun Kundakcioglu
  • Kathryn Finton
  • Panos M. Pardalos
  • Kevin Powers
  • Brij M. Moudgil
Article

DOI: 10.1007/s10439-009-9688-z

Cite this article as:
Pyrgiotakis, G., Kundakcioglu, O.E., Finton, K. et al. Ann Biomed Eng (2009) 37: 1464. doi:10.1007/s10439-009-9688-z

Abstract

In the present study, Raman spectroscopy is employed to assess the potential toxicity of chemical substances. Having several advantages compared to other traditional methods, Raman spectroscopy is an ideal solution for investigating cells in their natural environment. In the present work, we combine the power of spectral resolution of Raman with one of the most widely used machine learning techniques. Support vector machines (SVMs) are used in the context of classification on a well established database. The database is constructed on three different classes: healthy cells, Triton X-100 (necrotic death), and etoposide (apoptotic death). SVM classifiers successfully assess the potential effect of the test toxins (Triton X-100, etoposide). The cells that are exposed to heat (45 °C) are tested using the classification rules obtained. It is shown that the heat effect results in apoptotic death, which is in agreement with existing literature.

Keywords

Raman spectroscopy Support vector machines Death cell discrimination Toxic chemicals Cancer treatment 

Copyright information

© Biomedical Engineering Society 2009

Authors and Affiliations

  • Georgios Pyrgiotakis
    • 1
  • O. Erhun Kundakcioglu
    • 2
  • Kathryn Finton
    • 1
    • 3
  • Panos M. Pardalos
    • 2
  • Kevin Powers
    • 1
  • Brij M. Moudgil
    • 1
    • 4
  1. 1.Particle Engineering Research CenterUniversity of FloridaGainesvilleUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Biochemistry DepartmentBMSD, University of WashingtonPullmanUSA
  4. 4.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations