MorphometryBased Impedance Boundary Conditions for PatientSpecific Modeling of Blood Flow in Pulmonary Arteries
 Ryan L. Spilker,
 Jeffrey A. Feinstein,
 David W. Parker,
 V. Mohan Reddy,
 Charles A. Taylor
 … show all 5 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
Patientspecific computational models could aid in planning interventions to relieve pulmonary arterial stenoses common in many forms of congenital heart disease. We describe a new approach to simulate blood flow in subjectspecific models of the pulmonary arteries that consists of a numerical model of the proximal pulmonary arteries created from threedimensional medical imaging data with terminal impedance boundary conditions derived from linear wave propagation theory applied to morphometric models of distal vessels. A tuning method, employing numerical solution methods for nonlinear systems of equations, was developed to modify the distal vasculature to match measured pressure and flow distribution data. Onedimensional blood flow equations were solved with a finite element method in imagebased pulmonary arterial models using prescribed inlet flow and morphometrybased impedance at the outlets. Application of these methods in a pilot study of the effect of removal of unilateral pulmonary arterial stenosis induced in a pig showed good agreement with experimental measurements for flow redistribution and main pulmonary arterial pressure. Next, these methods were applied to a patient with repaired tetralogy of Fallot and predicted insignificant hemodynamic improvement with relief of the stenosis. This method of coupling imagebased and morphometrybased models could enable increased fidelity in pulmonary hemodynamic simulation.
 Alderson P. O., Boonvisut S., McKnight R. C., Jr. Hartman A. F. (1976) Pulmonary perfusion abnormalities and ventilationperfusion imbalance in children after total repair of tetralogy of Fallot. Circulation 53:332–337
 Beard D. A., Bassingthwaighte J. B. (2000) The fractal nature of myocardial blood flow emerges from a wholeorgan model of arterial network. J. Vasc. Res. 37:282–296 CrossRef
 Broyden C. G. (1965) A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19:577–593 CrossRef
 Burrowes K. S., Hunter P. J., Tawhai M. H. (2005) Anatomicallybased finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99:731–738 CrossRef
 Dawson C.A., Linehan J.H. (1997) Dynamics of blood flow and pressureflow relationship. In: Crystal R., J. West, P. Barnes, and E. Weibel (eds.) The Lung: Scientific Foundations. Philadelphia: LippincottRaven
 Dowdle S. C., Human D. G., Mann M. D. (1990) Pulmonary ventilation and perfusion abnormalities and ventilation perfusion imbalance in children with pulmonary atresia or extreme tetralogy of Fallot. J. Nucl. Med. 31:1276–1279
 Figueroa C. A., VignonClementel I. E., Jansen K. E., Hughes T. J. R., Taylor C. A. (2006) A coupled momentum method for modeling blood flow in threedimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706 CrossRef
 Frank O. (1920) Die elastizität der blutgefässe. Z. Biol. 71:255–272
 Gan R. Z., Yen R. T. (1994) Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J. Appl. Physiol. 77:706–717
 Gao J., Huang W., Yen R. T. (2000) Microcirculation impedance analysis in cat lung. J. Biomech. Eng. 122:99–103 CrossRef
 Glenny R. W., Robertson H. T. (1995) A computer simulation of pulmonary perfusion in three dimensions. J. Appl. Physiol. 79:357–369
 Grant B. J., Paradowski L. J. (1987) Characterization of pulmonary arterial input impedance with lumped parameter models. Am. J. Physiol. 252:H585–593
 Huang W., Tian Y., Gao J., Yen R.,T. (1998) Comparison of theory and experiment in pulsatile flow in cat lung. Ann. Biomed. Eng. 26:812–820 CrossRef
 Huang W., Yen R. T., McLaurine M., Bledsoe G. (1996) Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81:2123–2133
 Hughes, T. J. R. A Study of the OneDimensional Theory of Arterial Pulse Propagation. PhD Thesis, U C Berkeley, Berkeley, CA, 1974
 Hughes T. J. R., Lubliner J. (1973) On the onedimensional theory of blood flow in the larger vessels. Math. Biosci. 18:161–170 CrossRef
 Ilbawi M. N., Idriss F. S., DeLeon S. Y., Muster A. J., Gidding S. S., Berry T. E., Paul M. H. (1987) Factors that exaggerate the deleterious effects of pulmonary insufficiency on the right ventricle after tetralogy repair. Surgical implications. J. Thorac. Cardiovasc. Surg. 93:36–44
 Kassab G. S., Berkley J., Fung Y. C. (1997) Analysis of pig’s coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25:204–217
 Kassab G. S., Rider C. A., Tang N. J., Fung Y. C. (1993) Morphometry of pig coronary arterial trees. Am. J. Physiol. 265:H350–365
 Krenz G. S., Linehan J. H., Dawson C. A. (1992) A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72:2225–2237
 Laganà K., Balossino R., Migliavacca F., Pennati G., Bove E. L., de Leval M. R., Dubini G. (2005) Multiscale modeling of the cardiovascular system: Application to the study of pulmonary and coronary perfusions in the univentricular circulation. J. Biomech. 38:1129–1141 CrossRef
 Markl M., Chan F. P., Alley M. T., Wedding K. L., Draney M. T., Elkins C. J., Parker D. W., Wicker R., Taylor C. A., Herfkens R. J., Pelc N. J. (2003) Timeresolved threedimensional phasecontrast MRI. J. Magn. Reson. Imaging. 17:499–506 CrossRef
 McElhinney D. B., Parry A. J., Reddy V. M., Hanley F. L., Stanger P. (1998) Left pulmonary artery kinking caused by outflow tract dilatation after transannular patch repair of tetralogy of Fallot. Ann. Thorac. Surg. 65:1120–1126 CrossRef
 Molthen R. C., Karau K. L., Dawson C. A. (2004) Quantitative models of the rat pulmonary arterial tree morphometry applied to hypoxiainduced arterial remodeling. J. Appl. Physiol. 97:2372–2384 CrossRef
 Murgo J. P., Westerhof N. (1984) Input impedance of the pulmonary arterial system in normal man. Effects of respiration and comparison to systemic impedance. Circ. Res. 54:666–673
 Olufsen M. S. (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257–268
 Pries A. R., Secomb T. W. (2005) Microvascular blood viscosity in vivo and the endothelial surface layer. Am. J. Physiol. Heart. Circ. Physiol. 289:H2657–2664 CrossRef
 Rhodes J., Dave A., Pulling M. C., Geggel R. L., Marx G. R., Fulton D. R., Hijazi Z. M. (1998) Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of Fallot. Am. J. Cardiol. 81:1217–1219 CrossRef
 Seeley B. D., Young D. F. (1976) Effect of geometry on pressure losses across models of arterial stenoses. J. Biomech. 9:439–448 CrossRef
 Segers P., Stergiopulos N., Westerhof N., Wouters P., Kolh P., Verdonck P. (2003) Systematic and pulmonary hemodynamics assessed with a lumpedparameter heartarterial interaction model. J. Eng. Math. 47:185–199 CrossRef
 Smith N. P., Pullan A. J., Hunter P. J. (2000) Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. 28:14–25 CrossRef
 Smith N. P., Pullan A. J., Hunter P. J. (2002) An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018 CrossRef
 Steele B. N., Olufsen M. S., Taylor C. A. (2007) Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng.10:39–51 CrossRef
 Steele B. N., Wan J., Ku J. P., Hughes T. J. R., Taylor C. A. (2003) In vivo validation of a onedimensional finiteelement method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50:649–656 CrossRef
 Taylor M. G. (1959) An experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall; together with an analysis of the characteristics required in an electrical analogue. Phys. Med. Biol. 4:63–82 CrossRef
 Taylor M. G. (1966) The input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 6:29–51
 Taylor M. G. (1966) Wave transmission through an assembly of randomly branching elastic tubes. Biophys. J. 6:697–716 CrossRef
 Taylor C. A., Draney M. T., Ku J. P., Parker D., Steele B. N., Wang K., Zarins C. K. (1999) Predictive medicine: Computational techniques in therapeutic decisionmaking. Comput. Aided Surg. 4:231–247 CrossRef
 Tomassoni T. L., Galioto F. M. Jr., Vaccaro P. (1991) Cardiopulmonary exercise testing in children following surgery for tetralogy of Fallot. Am. J. Dis. Child. 145:1290–1293
 VignonClementel I. E., Figueroa C. A., Jansen K. E., Taylor C. A. (2006) Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796 CrossRef
 Vignon I. E., Taylor C. A. (2004) Outflow boundary conditions for onedimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 39:361–374 CrossRef
 Wan J., Steele B. N., Spicer S. A., Strohband S., Feijóo G. R., Hughes T. J. R., Taylor C. A. (2002) A onedimensional finite element method for simulationbased medical planning for cardiovascular disease. Comput. Methods Biomech. Biomed. Eng. 5:195–206 CrossRef
 Wang K.C., Dutton R.W., Taylor C.A. (1999) Level sets for vascular model construction in computational hemodynamics. IEEE Eng. Med. Biol. 18:33–39 CrossRef
 Wilson N. M., Wang K. C., Dutton R. W., Taylor C. A. (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect. Notes Comput. Sci. 2208:449–456 CrossRef
 Womersley J. R. (1957) Oscillatory flow in arteries: The constrained elastic tube as a model of arterial flow and pulse transmission. Phys. Med. Biol. 2:178–187 CrossRef
 Zhuang F. Y., Fung Y. C., Yen R. T. (1983) Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol. 55:1341–1348
 Title
 MorphometryBased Impedance Boundary Conditions for PatientSpecific Modeling of Blood Flow in Pulmonary Arteries
 Journal

Annals of Biomedical Engineering
Volume 35, Issue 4 , pp 546559
 Cover Date
 20070401
 DOI
 10.1007/s1043900692403
 Print ISSN
 00906964
 Online ISSN
 15739686
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Keywords

 Hemodynamics
 Onedimensional
 Finite element method
 Congenital heart disease
 Simulationbased treatment planning
 Industry Sectors
 Authors

 Ryan L. Spilker ^{(1)}
 Jeffrey A. Feinstein ^{(2)}
 David W. Parker ^{(1)}
 V. Mohan Reddy ^{(3)}
 Charles A. Taylor ^{(1)} ^{(2)} ^{(4)} ^{(5)}
 Author Affiliations

 1. Department of Mechanical Engineering, Stanford University, Clark Center E350B, 318 Campus Drive, Stanford, CA, 943055431, USA
 2. Department of Pediatrics, Stanford University, Stanford, CA, USA
 3. Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
 4. Department of Bioengineering, Stanford University, Stanford, CA, USA
 5. Department of Surgery, Stanford University, Stanford, CA, USA