Annals of Biomedical Engineering

, Volume 33, Issue 12, pp 1808–1818

A New Biomechanical Perfusion System for ex vivo Study of Small Biological Intact Vessels

  • Niklas Bergh
  • Mikael Ekman
  • Erik Ulfhammer
  • Maria Andersson
  • Lena Karlsson
  • Sverker Jern
Article

DOI: 10.1007/s10439-005-8478-5

Cite this article as:
Bergh, N., Ekman, M., Ulfhammer, E. et al. Ann Biomed Eng (2005) 33: 1808. doi:10.1007/s10439-005-8478-5

Abstract

The vascular endothelium transduces physical stimuli within the circulation into physiological responses, which influence vascular remodelling and tissue homeostasis. Therefore, a new computerized biomechanical ex vivo perfusion system was developed, in which small intact vessels can be perfused under well-defined biomechanical forces. The system enables monitoring and regulation of vessel lumen diameter, shear stress, mean pressure, variable pulsatile pressure and flow profile, and diastolic reversal flow. Vessel lumen measuring technique is based on detection of the amount of flourescein over a vessel segment. A combination of flow resistances, on/off switches, and capacitances creates a wide range of pulsatile pressures and flow profiles. Accuracy of the diameter measurement was evaluated. The diameters of umbilical arteries were measured and compared with direct ultrasonographic measurement of the vessel diameter. As part of the validation the pulsatile pressure waveform was altered, e.g., in terms of pulse pressure, frequency, diastolic shape, and diastolic reversal flow. In a series of simulation experiments, the hemodynamic homeostasis functions of the system were successfully challenged by generating a wide range of vascular diameters in artificial and intact human vessels. We conclude that the system presented may serve as a methodological and technical platform when performing advanced hemodynamic stimulation protocols.

Keywords

Biomechanical forcesShear stressPulsatile pressurePerfusion systemex vivo

Copyright information

© Biomedical Engineering Society 2005

Authors and Affiliations

  • Niklas Bergh
    • 1
  • Mikael Ekman
  • Erik Ulfhammer
    • 1
  • Maria Andersson
    • 1
  • Lena Karlsson
    • 1
  • Sverker Jern
    • 1
    • 2
  1. 1.Clinical Experimental Research Laboratory, Heart and Lung Institute, Sahlgrenska University Hospital/ÖstraGöteborg UniversityGöteborgSweden
  2. 2.Clinical Experimental Research LaboratorySahlgrenska University Hospital/ÖstraGöteborgSweden