Skip to main content
Log in

Cell biomechanics and its applications in human disease diagnosis

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee, G.Y., Lim, C.T.: Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118 (2007)

    Article  Google Scholar 

  2. Di Carlo, D.: A mechanical biomarker of cell state in medicine. J. Lab. Autom. 17, 32–42 (2012)

    Article  Google Scholar 

  3. Park, S., Ang, R.R., Duffy, S.P., et al.: Morphological differences between circulating tumor cells from prostate cancer patients and cultured prostate cancer cells. PLoS One 9, e85264 (2014)

    Article  Google Scholar 

  4. Dey, P.: Cancer nucleus: morphology and beyond. Diagn. Cytopathol. 38, 382–390 (2010)

    Google Scholar 

  5. Debes, J.D., Sebo, T.J., Heemers, H.V., et al.: p300 modulates nuclear morphology in prostate cancer. Cancer Res. 65, 708–712 (2005)

    Article  Google Scholar 

  6. Li, A., Mansoor, A.H., Tan, K.S., et al.: Observations on the internal and surface morphology of malaria infected blood cells using optical and atomic force microscopy. J. Microbiol. Methods 66, 434–439 (2006)

    Article  Google Scholar 

  7. Hosseini, S.M., Feng, J.J.: How malaria parasites reduce the deformability of infected red blood cells. Biophys. J. 103, 1–10 (2012)

    Article  Google Scholar 

  8. Suresh, S.: Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 21, 1871–1877 (2011)

    Article  Google Scholar 

  9. Evans, E., Fung, Y.C.: Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 13 (1971)

    Google Scholar 

  10. Marti, M., Baum, J., Rug, M., et al.: Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol. 171, 587–592 (2005)

    Article  Google Scholar 

  11. Ye, T., Phan-Thien, N., Khoo, B.C., et al.: Stretching and relaxation of malaria-infected red blood cells. Biophys. J. 105, 1103–1109 (2013)

    Article  Google Scholar 

  12. Karimi, A., Yazdi, S., Ardekani, A.M.: Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7, 21501 (2013)

    Article  Google Scholar 

  13. Diez-Silva, M., Dao, M., Han, J., et al.: Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35, 7 (2010)

    Article  Google Scholar 

  14. Pongponratn, E., Turner, G.D.H., Day, N.P.J., et al.: An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am. Soc. Trop. Med. Hyg. 69, 15 (2003)

    Google Scholar 

  15. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)

    Article  MathSciNet  Google Scholar 

  16. Prabhune, M., Belge, G., Dotzauer, A., et al.: Comparison of mechanical properties of normal and malignant thyroid cells. Micron 43, 1267–1272 (2012)

    Article  Google Scholar 

  17. Xu, W., Mezencev, R., Kim, B., et al.: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 7, e46609 (2012)

    Article  Google Scholar 

  18. Li, Q.S., Lee, G.Y., Ong, C.N., et al.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008)

    Article  Google Scholar 

  19. Hou, H.W., Li, Q.S., Lee, G.Y., et al.: Deformability study of breast cancer cells using microfluidics. Biomed. Microdevices 11, 557–564 (2009)

    Article  Google Scholar 

  20. Swaminathan, V., Mythreye, K., O’Brien, E.T., et al.: Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011)

    Article  Google Scholar 

  21. Lekka, M., Gil, D., Pogoda, K., et al.: Cancer cell detection in tissue sections using AFM. Arch. Biochem. Biophys. 518, 151–156 (2012)

    Article  Google Scholar 

  22. Lee, M.H., Wu, P.H., Staunton, J.R., et al.: Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys. J. 102, 2731–2741 (2012)

    Article  Google Scholar 

  23. Faria, E.C., Ma, N., Gazi, E., et al.: Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133, 1498–1500 (2008)

    Article  Google Scholar 

  24. Lekka, M., Pogoda, K., Gostek, J., et al.: Cancer cell recognition-mechanical phenotype. Micron 43, 1259–1266 (2012)

    Article  Google Scholar 

  25. Guz, N., Dokukin, M., Kalaparthi, V., et al.: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014)

    Article  Google Scholar 

  26. Guo, Q., Reiling, S.J., Rohrbach, P., et al.: Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum. Lab Chip 12, 1143–1150 (2012)

    Article  Google Scholar 

  27. Aingaran, M., Zhang, R., Law, S.K., et al.: Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell Microbiol. 14, 983–993 (2012)

    Article  Google Scholar 

  28. Lim, C.T., Li, A.: Mechanopathology of red blood cell diseases—why mechanics matters. Theor. Appl. Mech. Lett. 1, 5 (2011)

    Article  Google Scholar 

  29. Zhou, E.H., Lim, C.T., Tan, K.S., et al.: Investigating the progression of disease state of malariainfected red blood cells using micropipette aspiration. In: Proceedings of the Second World Congress for Chinese Biomedical Engineers, Beijing (2004)

  30. Lim, C.T., Zhou, E.H., Quek, S.T.: Mechanical models for living cells—a review. J. Biomech. 39, 195–216 (2006)

    Article  Google Scholar 

  31. Suresh, S., Spatz, J., Mills, J.P., et al.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)

    Article  Google Scholar 

  32. Shelby, J.P., White, J., Ganesan, K., et al.: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 100, 14618–14622 (2003)

    Article  Google Scholar 

  33. Guo, Q., Duffy, S.P., Matthews, K., et al.: Microfluidic analysis of red blood cell deformability. J. Biomech. 47, 1767–1776 (2014)

    Article  Google Scholar 

  34. Huang, S., Undisz, A., Diez-Silva, M., et al.: Dynamic deformability of Plasmodium falciparum-infected erythrocytes exposed to artesunate in vitro. Integr. Biol. (Camb.) 5, 414–422 (2013)

    Article  Google Scholar 

  35. Huang, S., Amaladoss, A., Liu, M., et al.: In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice. Infect. Immun. 82, 2532–2541 (2014)

    Article  Google Scholar 

  36. Kiessling, T.R., Herrera, M., Nnetu, K.D., et al.: Analysis of multiple physical parameters for mechanical phenotyping of living cells. Eur. Biophys. J. 42, 383–394 (2013)

    Article  Google Scholar 

  37. Remmerbach, T.W., Wottawah, F., Dietrich, J., et al.: Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009)

    Article  Google Scholar 

  38. Dudani, J.S., Gossett, D.R., Tse, H.T., et al.: Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13, 3728–3734 (2013)

    Article  Google Scholar 

  39. Gossett, D.R., Tse, H.T., Lee, S.A., et al.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012)

    Article  Google Scholar 

  40. Mauritz, J.M., Tiffert, T., Seear, R., et al.: Detection of Plasmodium falciparum-infected red blood cells by optical stretching. J. Biomed. Opt. 15, 030517 (2010)

    Article  Google Scholar 

  41. Bow, H., Pivkin, I.V., Diez-Silva, M., et al.: A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11, 1065–1073 (2011)

    Article  Google Scholar 

  42. Thalgott, M., Rack, B., Maurer, T., et al.: Detection of circulating tumor cells in different stages of prostate cancer. J. Cancer. Res. Clin. Oncol. 139, 755–763 (2013)

    Article  Google Scholar 

  43. Wendel, M., Bazhenova, L., Boshuizen, R., et al.: Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys. Biol. 9, 016005 (2012)

    Article  Google Scholar 

  44. Hur, S.C., Henderson-MacLennan, N.K., McCabe, E.R., et al.: Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11, 912–920 (2011)

    Article  Google Scholar 

  45. Lin, B.K., McFaul, S.M., Jin, C., et al.: Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator. Biomicrofluidics 7, 34114 (2013)

    Article  Google Scholar 

  46. Tan, S.J., Yobas, L., Lee, G.Y., et al.: Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11, 883–892 (2009)

    Article  Google Scholar 

  47. Wang, G., Mao, W., Byler, R., et al.: Stiffness dependent separation of cells in a microfluidic device. PLoS One 8, e75901 (2013)

    Article  Google Scholar 

  48. Hou, H.W., Bhagat, A.A., Chong, A.G., et al.: Deformability based cell margination-a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10, 2605–2613 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chwee Teck Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematbakhsh, Y., Lim, C.T. Cell biomechanics and its applications in human disease diagnosis. Acta Mech Sin 31, 268–273 (2015). https://doi.org/10.1007/s10409-015-0412-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0412-y

Keywords

Navigation