Unsteady Rotating Flows of a Viscoelastic Fluid with the Fractional Maxwell Model Between Coaxial Cylinders Authors Haitao Qi Department of Applied Mathematics and Statistics, Institute of Applied Mathematics Shandong University at Weihai Hui Jin School of Mathematics and Systematical Science Shandong University Research Paper

First Online: 21 June 2006 Received: 01 September 2005 Revised: 18 April 2006 Accepted: 19 April 2006 DOI :
10.1007/s10409-006-0013-x

Cite this article as: Qi, H. & Jin, H. Acta Mech Mech Sinica (2006) 22: 301. doi:10.1007/s10409-006-0013-x
Abstract The fractional calculus is used in the constitutive relationship model of viscoelastic fluid. A generalized Maxwell model with fractional calculus is considered. Based on the flow conditions described, two flow cases are solved and the exact solutions are obtained by using the Weber transform and the Laplace transform for fractional calculus.

Keywords Viscoelastic fluid Unsteady flow Fractional Maxwell model Exact solution The project supported by the National Natural Science Foundation of China (10272067, 10426024), the Doctoral Program Foundation of the Education Ministry of China (20030422046) and the Natural Science Foundation of Shandong University at Weihai. The English text was polished by Keren Wang.

References 1.

Han S.F. (2000). Constitutive equation and computational analytical theory Of non-Newtonian fluids. Science Press, Beijing

2.

Podlubny I. (1999). Fractional differential equations. Academic Press, San Diego

MATH 3.

Friedrich C. (1991). Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol. Acta 30:151–158

CrossRef 4.

Hilfer R. (2000). Applications of Fractional Calculus in Physics. World Scientific Press, Singapore

MATH 5.

Xu M.Y., Tan W.C. (2003). Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China Ser. G 46:145–157

CrossRef 6.

Huang J.Q., He G.Y., Liu C.Q. (1997). Analysis of general second-order fluid flow in double cylinder rheometer. Sci. China Ser. A 40:183–190

MATH CrossRef 7.

Xu M.Y., Tan W.C. (2001). Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A 44:1387–1399

CrossRef MATH 8.

Tan W.C., Xian F., Wei L. (2002). An exact solution of unsteady Couette flow of generalized second grade fluid. Chin. Sci. Bull. 47:1783–1785

CrossRef MathSciNet 9.

Tan W.C., Xu M.Y. (2002). The impulsive motion of flat plate in a general second grade fluid. Mech. Res. Comm. 29:3–9

CrossRef MathSciNet MATH 10.

Tan W.C., Xu M.Y. (2004). Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech. Sin. 20:471–476

CrossRef MathSciNet 11.

Shen F., Tan W.C., Zhao Y.H., Masuoka T. (2004). Decay of vortex and diffusion of temperature in a generalized second grade fluid. Appl. Math. Mech. 25:1151–1159

CrossRef MATH 12.

Tan W.C., Xu M.Y. (2002). Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sinica 18:342–349

CrossRef MathSciNet 13.

Tan W.C., Pan W.X., Xu M.Y. (2003). A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Nonlin. Mech. 38:645–650

CrossRef MATH 14.

Hayat T., Nadeem S., Asghar S. (2004). Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model. Appl. Math. Comput. 151:153–161

CrossRef MathSciNet MATH 15.

Tong D.K., Liu Y.S. (2005). Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe. Int. J. Eng. Sci. 43:281–289

CrossRef MathSciNet 16.

Tong D.K., Wang R.H., Yang H.S. (2005). Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci. China Ser. G 48:485–495

CrossRef 17.

Özisik M.N. (1980). Heat conduction. Wiley, New York

18.

Watson G.N. (1995). A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge

MATH