Skip to main content
Log in

Electrochemical detection techniques in micro- and nanofluidic devices

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Electrochemical techniques are widely used in microfluidic and nanofluidic devices because they are suitable for miniaturization, have better sensitivity compared to optical detection techniques, and their components can be reliably microfabricated. In addition to the detection and quantification of analytes, electrochemical techniques can be used to monitor processes such as biological cell death and protein/DNA separations/purifications. Such techniques are combined with micro- and nanofluidic devices with point-of-care (POC) applications in mind, where cost, footprint, ease of use, and independence from peripheral equipment are critical for a viable design. A large variety of electrode materials and device configurations have been employed to meet these requirements. This review introduces the reader to the major electrochemical techniques, materials, and fabrication methods for working and reference electrodes, and to surface modifications of electrodes to facilitate electrochemical measurements, in the context of micro- and nanofluidic devices. The continuing development of these techniques holds promise for the next-generation lab-on-a-chip devices, which can realize the goals of this technology such as POC clinical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AD:

Amperometric detection

BDD:

Boron-doped diamond

CC:

Chronocoulometry

CD:

Conductivity-based detection

CE–AD:

Capillary electrophoresis–amperometric detection

CE:

Counter electrode

CMOS:

Complementary metal–oxide–semiconductor

CNT:

Carbon nanotube

CTC:

Circulating tumor cell

CV:

Cyclic voltammetry

DEPIM:

Dielectrophoretic impedance measurement

ECCS:

Electrochemical correlation spectroscopy

EIS:

Electrochemical impedance spectroscopy

ELISA:

Enzyme-linked immunosorbent assay

ESPR:

Enhanced surface plasmon resonance

FIB:

Focused ion beam

FSCV:

Fast scan cyclic voltammetry

ITO:

Indium tin oxide

LIF:

Laser-induced fluorescence

LOD:

Limit of detection

LSV:

Linear scan voltammetry

PAD:

Pulsed amperometric detection

PCB:

Printed circuit board

PCR:

Polymerase chain reaction

POC:

Point of care

SAM:

Self-assembled monolayer

SECM:

Scanning electrochemical microscopy

SPR:

Surface plasmon resonance

SV:

Stripping voltammetry

SWV:

Square wave voltammetry

References

  • Abad-Villar EM, Tanyanyiwa J, Fernandez-Abedul MT, Costa-Garcia A, Hauser PC (2004) Detection of human immunoglobulin in microchip and conventional capillary electrophoresis with contactless conductivity measurements. Anal Chem 76(5):1282–1288. doi:10.1021/ac0346656

    Google Scholar 

  • Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4(4):349–355. doi:10.1007/s10404-007-0190-3

    Google Scholar 

  • Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc 130(27):8633–8641. doi:10.1021/ja8015022

    Google Scholar 

  • Ahmadi AG, Peng ZC, Hesketh PJ, Nair S (2010) Wafer-scale process for fabricating arrays of nanopore devices. J Micro Nanolithogr MEMS MOEMS 9(3):8. doi:10.1117/1.3486202

    Google Scholar 

  • Altinier S, Zaninotto M, Mion M, Carraro P, Rocco S, Tosato F, Plebani M (2001) Point-of-care testing of cardiac markers: results from an experience in an emergency department. Clin Chim Acta 311(1):67–72. doi:10.1016/s0009-8981(01)00562-9

    Google Scholar 

  • Amatore C, Pebay C, Thouin L, Wang AF (2009) Cyclic voltammetry at microelectrodes: influence of natural convection on diffusion layers as characterized by in situ mapping of concentration profiles. Electrochem Commun 11(6):1269–1272. doi:10.1016/j.elecom.2009.04.018

    Google Scholar 

  • Ang PK, Li A, Jaiswal M, Wang Y, Hou HW, Thong JTL, Lim CT, Loh KP (2011) Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett 11(12):5240–5246. doi:10.1021/nl202579k

    Google Scholar 

  • Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52

    Google Scholar 

  • Balslev S, Jorgensen AM, Bilenberg B, Mogensen KB, Snakenborg D, Geschke O, Kutter JP, Kristensen A (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6(2):213–217. doi:10.1039/b512546d

    Google Scholar 

  • Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503. doi:10.1016/j.bios.2004.10.016

    Google Scholar 

  • Bani-Yaseen AAD (2009) Fabrication and characterization of fully integrated microfluidic device with carbon sensing electrode for the analysis of selected biomedical targets. IEEE Sens J 9(1–2):81–86. doi:10.1109/jsen.2008.2011074

    Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  • Barton AC, Davis F, Higson SPJ (2008) Labeless immunosensor assay for the stroke marker protein neuron specific enolase based upon an alternating current impedance protocol. Anal Chem 80(24):9411–9416. doi:10.1021/ac801394d

    Google Scholar 

  • Belmont C, Tercier ML, Buffle J, Fiaccabrino GC, KoudelkaHep M (1996) Mercury-plated iridium-based microelectrode arrays for trace metals detection by voltammetry: optimum conditions and reliability. Anal Chim Acta 329(3):203–214. doi:10.1016/0003-2670(96)00116-x

    Google Scholar 

  • Benjamin H, Bhansali S, Hoath SB, Pickens WL, Smallwood R (2005) A planar micro-sensor for bio-impedance measurements. Sens Actuators B Chem 111:430–435. doi:10.1016/j.snb.2005.03.075

    Google Scholar 

  • Brett CMA, Inzelt G, Kertesz V (1999) Poly(methylene blue) modified electrode sensor for haemoglobin. Anal Chim Acta 385(1–3):119–123. doi:10.1016/s0003-2670(98)00808-3

    Google Scholar 

  • Brown ER, Sandifer JR (1986) Cyclic voltammetry, AC polarography, and related techniques. In: Rossiter BW, Hamilton JF (eds) Electrochemical methods, vol 2. Physical methods of chemistry, 2nd edn. Wiley, Hoboken

  • Bruus H (2008) Theoretical microfluidics. Oxford University Press, Oxford, UK

  • Bunyakul N, Edwards KA, Promptmas C, Baeumner AJ (2009) Cholera toxin subunit B detection in microfluidic devices. Anal Bioanal Chem 393(1):177–186. doi:10.1007/s00216-008-2364-6

    Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. doi:10.1021/ac901071p

    Google Scholar 

  • Carvalhal RF, Kfouri MS, Piazetta MHD, Gobbi AL, Kubota LT (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82(3):1162–1165. doi:10.1021/ac902647r

    Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2006) Amperometric detector designs for capillary electrophoresis microchips. J Chromatogr A 1109(2):291–299. doi:10.1016/j.chroma.2006.01.029

    Google Scholar 

  • Castano-Alvarez M, Teresa Fernandez-Abedul M, Costa-Garcia A (2007) Electroactive intercalators for DNA analysis on microchip electrophoresis. Electrophoresis 28(24):4679–4689. doi:10.1002/elps.200700160

    Google Scholar 

  • Chainani ET, Ngo KT, Scheeline A (2013) Electrochemistry in an acoustically levitated drop. Anal Chem 85:2500–2506. doi:10.1021/ac3035162

    Google Scholar 

  • Chang C-P, Nagel DJ, Velasquez MT, Zaghloul ME (2011) Compact optical microfluidic uric acid analysis system. Biosens Bioelectron 26(10):4155–4161. doi:10.1016/j.bios.2011.04.013

    Google Scholar 

  • Chikkaveeraiah BV, Liu H, Mani V, Papadimitrakopoulos F, Rusling JF (2009) A microfluidic electrochemical device for high sensitivity biosensing: detection of nanomolar hydrogen peroxide. Electrochem Commun 11:819–822

    Google Scholar 

  • Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF (2011) Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens Bioelectron 26(11):4477–4483. doi:10.1016/j.bios.2011.05.005

    Google Scholar 

  • Choi S, Goryll M, Sin LYM, Wong PK, Chae J (2011) Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluid Nanofluid 10(2):231–247. doi:10.1007/s10404-010-0638-8

    Google Scholar 

  • Choi H, Kim KB, Jeon CS, Hwang I, Lee S, Kim HK, Kim HC, Chung TD (2013) A label-free DC impedance-based microcytometer for circulating rare cancer cell counting. Lab Chip 13:970–977. doi:10.1039/c2lc41376k

    Google Scholar 

  • Chu Q, Jiang L, An X, Ye J (2008) Rapid determination of acetaminophen and p-aminophenol in pharmaceutical formulations using miniaturized capillary electrophoresis with amperometric detection. Anal Chim Acta 606(2):246–251. doi:10.1016/j.aca.2007.11.015

    Google Scholar 

  • Chua CK, Pumera M (2013) Chemically modified graphenes as detectors in lab-on-chip device. Electroanalysis 25(4):945–950. doi:10.1002/elan.201200583

    Google Scholar 

  • Chua CK, Ambrosi A, Pumera M (2011) Graphene based nanomaterials as electrochemical detectors in lab-on-a-chip devices. Electrochem Commun 13(5):517–519. doi:10.1016/j.elecom.2011.03.001

    Google Scholar 

  • Chuang K-C, Fan S-K (2006) Direct handwriting manipulation of droplets by self-aligned mirror-EWOD across a dielectric sheet. Paper presented at the 19th IEEE international conference on micro electro mechanical systems, Istanbul, Turkey

  • Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402(1):117–127. doi:10.1007/s00216-011-5407-3

    Google Scholar 

  • Corbo D, Bertotti M (2002) Use of a copper electrode in alkaline medium as an amperometric sensor for sulphite in a flow-through configuration. Anal Bioanal Chem 374(3):416–420. doi:10.1007/s00216-002-1504-7

    Google Scholar 

  • Cortes-Salazar F, Lesch A, Momotenko D, Busnel JM, Wittstock G, Girault HH (2010) Fountain pen for scanning electrochemical microscopy. Anal Methods 2(7):817–823. doi:10.1039/c0ay00096e

    Google Scholar 

  • Cui G, Lee JS, Kim SJ, Nam H, Cha GS, Kim HD (1998) Potentiometric pCO(2) sensor using polyaniline-coated pH-sensitive electrodes. Analyst 123(9):1855–1859. doi:10.1039/a802872i

    Google Scholar 

  • Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292. doi:10.1126/science.1062711

    Google Scholar 

  • Dahlin AB, Dielacher B, Rajendran P, Sugihara K, Sannomiya T, Zenobi-Wong M, Voros J (2012) Electrochemical plasmonic sensors. Anal Bioanal Chem 402(5):1773–1784. doi:10.1007/s00216-011-5404-6

    Google Scholar 

  • Dam VAT, Olthuis W, van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst 132(4):365–370. doi:10.1039/b616667a

    Google Scholar 

  • Daniel D, Gutz IGR (2003) Quick production of gold electrode sets or arrays and of microfluidic flow cells based on heat transfer of laser printed toner masks onto compact discs. Electrochem Commun 5(9):782–786. doi:10.1016/j.elecom.2003.07.004

    Google Scholar 

  • Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257. doi:10.1002/elan.200603855

    Google Scholar 

  • Dawoud AA, Kawaguchi T, Jankowiak R (2007a) In-channel modification of electrochemical detector for the detection of bio-targets on microchip. Electrochem Commun 9(7):1536–1541. doi:10.1016/j.elecom.2007.02.016

    Google Scholar 

  • Dawoud AA, Kawaguchi T, Jankowiak R (2007b) Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct. Anal Bioanal Chem 388(1):245–252. doi:10.1007/s00216-007-1203-5

    Google Scholar 

  • Defever T, Druet M, Rochelet-Dequaire M, Joannes M, Grossiord C, Limoges B, Marchal D (2009) Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis. J Am Chem Soc 131(32):11433–11441. doi:10.1021/ja901368m

    Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107(37):16060–16065. doi:10.1073/pnas.1001831107

    Google Scholar 

  • Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, Barany F, Soper SA (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem 83(6):2301–2309. doi:10.1021/ac103172y

    Google Scholar 

  • Dorris MK, Crick EW, Lunte CE (2012) A parallel dual-electrode detector for capillary electrophoresis. Electrophoresis 33(17):2725–2732. doi:10.1002/elps.201200113

    Google Scholar 

  • Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12(1):153–158

    Google Scholar 

  • Du Y, Chen C, Zhou M, Dong S, Wang E (2011) Microfluidic electrochemical aptameric assay integrated on-chip: a potentially convenient sensing platform for the amplified and multiplex analysis of small molecules. Anal Chem 83(5):1523–1529. doi:10.1021/ac101988n

    Google Scholar 

  • Dumitrescu I, Yancey DF, Crooks RM (2012) Dual-electrode microfluidic cell for characterizing electrocatalysts. Lab Chip 12(5):986–993. doi:10.1039/c2lc21181e

    Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Google Scholar 

  • El-Said WA, Yea C-H, Kim H, Oh B-K, Choi J-W (2009) Cell-based chip for the detection of anticancer effect on HeLa cells using cyclic voltammetry. Biosens Bioelectron 24(5):1259–1265. doi:10.1016/j.bios.2008.07.037

    Google Scholar 

  • Erickson D, Li DQ (2004) Integrated microfluidic devices. Anal Chim Acta 507(1):11–26. doi:10.1016/j.aca.2003.09.019

    Google Scholar 

  • Erlandsson PG, Robinson ND (2011) Electrolysis-reducing electrodes for electrokinetic devices. Electrophoresis 32(6–7):784–790. doi:10.1002/elps.201000617

    Google Scholar 

  • Ertl P, Emrich CA, Singhal P, Mathies RA (2004) Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem 76(13):3749–3755. doi:10.1021/ac035282a

    Google Scholar 

  • Evander M, Ricco AJ, Morser J, Kovacs GTA, Leung LLK, Giovangrandi L (2013) Microfluidic impedance cytometer for platelet analysis. Lab Chip 13(4):722–729. doi:10.1039/c2lc40896a

    Google Scholar 

  • Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18. doi:10.1016/j.bios.2012.11.033

    Google Scholar 

  • Fang TH, Ramalingam N, Dong X-D, Ngin TS, Zeng X, Kuan ATL, Huat EYP, Gong H-Q (2009) Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens Bioelectron 24(7):2131–2136. doi:10.1016/j.bios.2008.11.009

    Google Scholar 

  • Fernandez-la-Villa A, Sanchez-Barragan D, Pozo-Ayuso DF, Castano-Alvarez M (2012) Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection. Electrophoresis 33(17):2733–2742. doi:10.1002/elps.201200236

    Google Scholar 

  • Fischer DJ, Hulvey MK, Regel AR, Lunte SM (2009) Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance. Electrophoresis 30(19):3324–3333. doi:10.1002/elps.200900317

    Google Scholar 

  • Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li JL (2005) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5(10):1905–1909. doi:10.1021/nl051199m

    Google Scholar 

  • Forry SP, Murray JR, Heien MLAV, Locascio LE, Wightman RM (2004) Probing electric fields inside microfluidic channels during electroosmotic flow with fast-scan cyclic voltammetry. Anal Chem 76(17):4945–4950

    Google Scholar 

  • Fosdick SE, Berglund SP, Mullins CB, Crooks RM (2013) Parallel screening of electrocatalyst candidates using bipolar electrochemistry. Anal Chem 85:2493–2499. doi:10.1021/ac303581b

    Google Scholar 

  • Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT (2011) Perspective on diagnostics for global health. IEEE Pulse 2(6):40–50

    Google Scholar 

  • Gamboa JCM, Pena RC, Paixao TRLC, Bertotti M (2009) A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples. Talanta 80(2):581–585. doi:10.1016/j.talanta.2009.07.028

    Google Scholar 

  • Garcia CD, Henry CS (2003) Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal Chem 75(18):4778–4783. doi:10.1021/ac034440v

    Google Scholar 

  • Gebala M, Stoica L, Neugebauer S, Schuhmann W (2009) Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5):325–331. doi:10.1002/elan.200804388

    Google Scholar 

  • Gencoglu A, Camacho-Alanis F, Nguyen VT, Nakano A, Ros A, Minerick AR (2011) Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis 32(18):2436–2447. doi:10.1002/elps.201100090

    Google Scholar 

  • Ghanim MH, Abdullah MZ (2011) Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: recent developments. Talanta 85(1):28–34. doi:10.1016/j.talanta.2011.04.069

    Google Scholar 

  • Goluch ED, Wolfrum B, Singh PS, Zevenbergen MAG, Lemay SG (2009) Redox cycling in nanofluidic channels using interdigitated electrodes. Anal Bioanal Chem 394(2):447–456. doi:10.1007/s00216-008-2575-x

    Google Scholar 

  • Gomez R, Bashir R, Sarikaya A, Ladisch MR, Sturgis J, Robinson JP, Geng T, Bhunia AK, Apple HL, Wereley S (2001) Microfluidic biochip for impedance spectroscopy of biological species. Biomed Microdevices 3(3). doi:10.1023/a:1011403112850

  • Gonzalez CF, Cropek DM, Henry CS (2009) Photopatternable carbon electrodes for chip-based electrochemical detection. Electroanalysis 21(19):2171–2174. doi:10.1002/elan.200904643

    Google Scholar 

  • Grieshaber D, MacKenzie R, Voeroes J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458. doi:10.3390/s8031400

    Google Scholar 

  • Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226. doi:10.1016/s1389-1723(04)70195-4

    Google Scholar 

  • Guan WJ, Li Y, Chen YQ, Zhang XB, Hu GQ (2005) Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron 21(3):508–512. doi:10.1016/j.bios.2004.10.030

    Google Scholar 

  • Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515. doi:10.1021/ac2030199

    Google Scholar 

  • Guijt RM, Baltussen E, van der Steen G, Frank H, Billiet H, Schalkhammer T, Laugere F, Vellekoop M, Berthold A, Sarro L, van Dedem GWK (2001) Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis. Electrophoresis 22(12):2537–2541. doi:10.1002/1522-2683(200107)22:12<2537:aid-elps2537>3.0.co;2-c

    Google Scholar 

  • Ha K, Joo G-s, Jha SK, Kim Y-S (2009) Monitoring of endocrine disruptors by capillary electrophoresis amperometric detector. Microelectron Eng 86(4–6):1407–1410. doi:10.1016/j.mee.2009.02.025

    Google Scholar 

  • Hao Z, Chen H, Zhu X, Li J, Liu C (2008) Modification of amorphous poly(ethylene terephthalate) surface by UV light and plasma for fabrication of an electrophoresis chip with an integrated gold microelectrode. J Chromatogr A 1209(1–2):246–252. doi:10.1016/j.chroma.2008.08.088

    Google Scholar 

  • Hao Z, Chen H, Ma D (2009) Preparation of micro gold devices on poly(dimethylsiloxane) chips with region-selective electroless plating. Anal Chem 81(20):8649–8653. doi:10.1021/ac901539n

    Google Scholar 

  • Harrell CC, Choi Y, Horne LP, Baker LA, Siwy ZS, Martin CR (2006) Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir 22(25):10837–10843. doi:10.1021/la061234k

    Google Scholar 

  • He RX, Lin P, Liu ZK, Zhu HW, Zhao XZ, Chan HLW, Yan F (2012) Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection. Nano Lett 12(3):1404–1409. doi:10.1021/nl2040805

    Google Scholar 

  • He P, Oncescu V, Lee S, Choi I, Erickson D (2013) Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Anal Chim Acta 759:74–80. doi:10.1016/j.aca.2012.10.038

    Google Scholar 

  • Hebert NE, Snyder B, McCreery RL, Kuhr WG, Brazill SA (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal Chem 75(16):4265–4271. doi:10.1021/ac026425g

    Google Scholar 

  • Heikali D, Di Carlo D (2010) A niche for microfluidics in portable hematology analyzers. JALA 15(4):319–328. doi:10.1016/j.jala.2010.02.005

    Google Scholar 

  • Heldt CL, Sieloff AK, Merillat JP, Minerick AR, King JA, Perger WF, Fukushima H, Narendra J (2013) Stacked graphene nanoplatelet paper sensor for protein detection. Sens Actuators B Chem 181(0):92–98. doi:10.1016/j.snb.2013.01.041

    Google Scholar 

  • Henry CS, Fritsch I (1998) Microfabricated recessed microdisk electrodes: characterization in static and convective solutions. Anal Chem 71(3):550–556. doi:10.1021/ac980375r

    Google Scholar 

  • Heyderman LJ, Ketterer B, Bachle D, Glaus F, Haas B, Schift H, Vogelsang K, Gobrecht J, Tiefenauer L, Dubochet O, Surbled P, Hessler T (2003) High volume fabrication of customised nanopore membrane chips. Microelectron Eng 67–8:208–213. doi:10.1016/s0167-9317(03)00073-x

    Google Scholar 

  • Ho J-R, Shih T-K, Cheng JWJ, Sung C-K, Chen C-F (2007) A novel method for fabrication of self-aligned double microlens arrays. Sens Actuators A Phys 135(2):465–471. doi:10.1016/j.sna.2006.09.007

    Google Scholar 

  • Hu L, Huo K, Chen R, Gai B, Fu J, Chu PK (2011) Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal Chem 83:8138–8144

    Google Scholar 

  • Hu CG, Bai XY, Wang YK, Jin W, Zhang X, Hu SS (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84(8):3745–3750. doi:10.1021/ac3003243

    Google Scholar 

  • Huang Y, Mason AJ (2013) Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19):3929–3934. doi:10.1039/c3lc50437a

    Google Scholar 

  • Huang X, Gordon MJ, Zare RN (1988) Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal Chem 60(17):1837–1838. doi:10.1021/ac00168a040

    Google Scholar 

  • Huang WH, Cheng W, Zhang Z, Pang DW, Wang ZL, Cheng JK, Cui DF (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76(2):483–488. doi:10.1021/ac035026y

    Google Scholar 

  • Hwang S, La Fratta CN, Agarwal V, Yu X, Walt DR, Sonkusale S (2009) CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens J 9:609–615

    Google Scholar 

  • Inczèdy J, Lengyel T, Ure A, Gelencsér A, Hulanicki A (1998) Compendium of analytical nomenclature IUPAC, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Inoue K, Ferrante P, Hirano Y, Yasukawa T, Shiku H, Matsue T (2007) A competitive immunochromatographic assay for testosterone based on electrochemical detection. Talanta 73(5):886–892. doi:10.1016/j.talanta.2007.05.008

    Google Scholar 

  • Irawan R, Tjin SC, Fang X, Fu CY (2007) Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomed Microdevices 9(3):413–419. doi:10.1007/s10544-007-9052-8

    Google Scholar 

  • Ito T, Hosokawa K, Maeda M (2007) Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosens Bioelectron 22(8):1816–1819. doi:10.1016/j.bios.2006.08.008

    Google Scholar 

  • Ivanov I, Stojcic J, Stanimirovic A, Sargent E, Nam RK, Kelley SO (2013) Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples. Anal Chem 85(1):398–403. doi:10.1021/ac3029739

    Google Scholar 

  • Jackson DJ, Naber JF, Roussel TJ, Crain MM, Walsh KM, Keynton RS, Baldwin RP (2003) Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Anal Chem 75(14):3643–3649. doi:10.1021/ac0206622

    Google Scholar 

  • Janin M, Ghilane J, Randriamahazaka H, Lacroix J-C (2011) Electrochemical fabrication of highly stable redox-active nanojunctions. Anal Chem 83:9709–9714

    Google Scholar 

  • Jha SK, Ra G-S, Joo G-S, Kim Y-S (2009) Electrochemical cell lysis on a miniaturized flow-through device. Curr Appl Phys 9(4):E301–E303. doi:10.1016/j.cap.2009.06.035

    Google Scholar 

  • Kaetelhoen E, Hofmann B, Lemay SG, Zevenbergen MAG, Offenhaeusser A, Wolfrum B (2010) Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. Anal Chem 82(20):8502–8509. doi:10.1021/ac101387f

    Google Scholar 

  • Kafka J, Panke O, Abendroth B, Lisdat F (2008) A label-free DNA sensor based on impedance spectroscopy. Electrochim Acta 53(25):7467–7474. doi:10.1016/j.electacta.2008.01.031

    Google Scholar 

  • Kahlert H (2010) Reference electrodes. In: Scholz F (ed) Electroanalytical methods: guide to experiments and applications. Springer, Heidelberg

    Google Scholar 

  • Kasem KK, Jones S (2008) Platinum as a reference electrode in electrochemical measurements. Platin Met Rev 52(2):100–106. doi:10.1595/147106708x297855

    Google Scholar 

  • Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res 27(24):4830–4837. doi:10.1093/nar/27.24.4830

    Google Scholar 

  • Kikura-Hanajiri R, Martin RS, Lunte SM (2002) Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal Chem 74(24):6370–6377. doi:10.1021/ac0204000

    Google Scholar 

  • Kim J, Kim E-G, Bae S, Kwon S, Chun H (2013) Potentiometric multichannel cytometer microchip for high-throughput microdispersion analysis. Anal Chem 85:362–368. doi:10.1021/ac302905x

    Google Scholar 

  • Kissinger PT, Ridgway TH (1996) Small-amplitude controlled-potential techniques. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Klett O, Bjorefors F, Nyholm L (2001) Elimination of nigh-voltage field effects in end column electrochemical detection in capillary electrophoresis by use of on-chip microband electrodes. Anal Chem 73(8):1909–1915. doi:10.1021/ac0012288

    Google Scholar 

  • Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625. doi:10.1126/science.287.5453.622

    Google Scholar 

  • Kong J, Chapline MG, Dai HJ (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386. doi:10.1002/1521-4095(200109)13:18<1384:aid-adma1384>3.0.co;2-8

    Google Scholar 

  • Kong Y, Chen H, Wang Y, Soper SA (2006) Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating. Electrophoresis 27(14):2940–2950. doi:10.1002/elps.200500750

    Google Scholar 

  • Kounaves SP, Deng W, Hallock PR, Kovacs GTA, Storment CW (1994) Iridium-based ultramicroelectrode array fabricated by microlithography. Anal Chem 66(3):418–423. doi:10.1021/ac00075a017

    Google Scholar 

  • Kovarik ML, Torrence NJ, Spence DM, Martin RS (2004) Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses. Analyst 129(5):400–405. doi:10.1039/b401380h

    Google Scholar 

  • Kowalczyk SW, Tuijtel MW, Donkers SP, Dekker C (2010) Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett 10(4):1414–1420. doi:10.1021/nl100271c

    Google Scholar 

  • Koydemir HC, Kulah H, Ozgen C, Alp A, Hascelik G (2011) MEMS biosensors for detection of methicillin resistant Staphylococcus aureus. Biosens Bioelectron 29(1):1–12. doi:10.1016/j.bios.2011.07.071

    Google Scholar 

  • Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochim Acta 46(26–27):4065–4073. doi:10.1016/s0013-4686(01)00687-9

    Google Scholar 

  • Kuo-Hoong L, Yuan-Deng S, Shean-Jen C, Fan-Gang T, Gwo-Bin L (2007) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23 (4). doi:10.1016/j.bios.2007.05.007

  • Kuswandi B, Nuriman N, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155. doi:10.1016/j.aca.2007.08.046

    Google Scholar 

  • Kwakye S, Goral VN, Baeumner AJ (2006) Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens Bioelectron 21(12):2217–2223. doi:10.1016/j.bios.2005.11.017

    Google Scholar 

  • Lee YH, Maus RG, Smith BW, Winefordner JD (1994) Laser-induced fluorescence detection of a single-molecule in a capillary. Anal Chem 66(23):4142–4149. doi:10.1021/ac00095a005

    Google Scholar 

  • Lee JA, Hwang S, Kwak J, Park SI, Lee SS, Lee K-C (2008) An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection. Sens Actuators B Chem 129(1):372–379. doi:10.1016/j.snb.2007.08.034

    Google Scholar 

  • Lee K-S, Park S-H, Won S-Y, Shim Y-B (2009) Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry. Electrophoresis 30 (18). doi:10.1002/elps.200900117

  • Lee G, Park I, Kwon K, Kwon T, Seo J, Chang WJ, Nam H, Cha GS, Choi MH, Yoon DS, Lee SW (2012a) Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies. Biomed Microdevices 14(2):375–384. doi:10.1007/s10544-011-9614-7

    Google Scholar 

  • Lee JW, Hong JK, Kjeang E (2012b) Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications. Electrochim Acta 83:430–438. doi:10.1016/j.electacta.2012.07.104

    Google Scholar 

  • Levy SL, Craighead HG (2010) DNA manipulation, sorting, and mapping in nanofluidic systems. Chem Soc Rev 39(3):1133–1152. doi:10.1039/b820266b

    Google Scholar 

  • Lewis AP, Cranny A, Harris NR, Green NG, Wharton JA, Wood RJK, Stokes KR (2013) Review on the development of truly portable and in situ capillary electrophoresis systems. Meas Sci Technol 24(4). doi:10.1088/0957-0233/24/4/042001

  • Li JP, Peng TZ, Peng YQ (2003) A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified electrode. Electroanalysis 15(12):1031–1037. doi:10.1002/elan.200390124

    Google Scholar 

  • Liang XG, Chou SY (2008) Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis. Nano Lett 8(5):1472–1476. doi:10.1021/nl080473k

    Google Scholar 

  • Lillo M, Losic D (2009) Ion-beam pore opening of porous anodic alumina: the formation of single nanopore and nanopore arrays. Mater Lett 63(3–4):457–460. doi:10.1016/j.matlet.2008.11.007

    Google Scholar 

  • Lim TK, Ohta H, Matsunaga T (2003) Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem 75(14):3316–3321. doi:10.1021/ac020749n

    Google Scholar 

  • Lin K-W, Huang Y-K, Su H-L, Hsieh Y-Z (2008) In-channel simplified decoupler with renewable electrochemical detection for microchip capillary electrophoresis. Anal Chim Acta 619(1):115–121. doi:10.1016/j.aca.2008.02.062

    Google Scholar 

  • Lin DJ, Wu J, Wang M, Yan F, Ju HX (2012) Triple signal amplification of graphene film, polybead carried gold nanoparticles as tracing tag and silver deposition for ultrasensitive electrochemical immunosensing. Anal Chem 84(8):3662–3668. doi:10.1021/ac3001435

    Google Scholar 

  • Lindsay S, Vazquez T, Egatz-Gomez A, Loyprasert S, Garcia AA, Wang J (2007) Discrete microfluidics with electrochemical detection. Analyst 132(5):412–416. doi:10.1039/b617631c

    Google Scholar 

  • Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566. doi:10.1021/ja2071779

    Google Scholar 

  • Liu H, Crooks RM (2012) Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84(5):2528–2532. doi:10.1021/ac203457h

    Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9(2):190–197. doi:10.1109/84.846699

    Google Scholar 

  • Liu Y, Wipf DO, Henry CS (2001) Conductivity detection for monitoring mixing reactions in microfluidic devices. Analyst 126(8):1248–1251. doi:10.1039/b101479j

    Google Scholar 

  • Liu AL, He FY, Hu YL, Xia XH (2006a) Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. Talanta 68(4):1303–1308. doi:10.1016/j.talanta.2005.07.043

    Google Scholar 

  • Liu Y, Yuan R, Chai YQ, Tang DP, Dai JY, Zhong X (2006b) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens Actuators B Chem 115(1):109–115. doi:10.1016/j.snb.2005.08.048

    Google Scholar 

  • Liu G, Lin Y-Y, Wang J, Wu H, Wai CM, Lin Y (2007) Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal Chem 79(20):7644–7653. doi:10.1021/ac070691i

    Google Scholar 

  • Liu AH, Zhao QT, Guan XY (2010) Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal Chim Acta 675(2):106–115. doi:10.1016/j.aca.2010.07.001

    Google Scholar 

  • Liu C, Qu Y, Luo Y, Fang N (2011) Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 32(23):3308–3318. doi:10.1002/elps.201100159

    Google Scholar 

  • Liu B, Zhang Y, Mayer D, Krause H-J, Jin Q, Zhao J, Offenhäusser A, Xu Y (2012a) Determination of heavy metal ions by microchip capillary electrophoresis coupled with contactless conductivity detection. Electrophoresis 33(8):1247–1250

    Google Scholar 

  • Liu G, Wang S, Liu J, Song D (2012b) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84(9):3921–3928

    Google Scholar 

  • Liu Y, Kwa T, Revzin A (2012c) Simultaneous detection of cell-secreted TNF-alpha, and IFN-gamma using micropatterned aptamer-modified electrodes. Biomaterials 33(30):7347–7355. doi:10.1016/j.biomaterials.2012.06.089

    Google Scholar 

  • Liu P, Martin RJ, Dong L (2013) Microelectrofluidic grids for nematodes—a lensless image-sensorless approach for on-chip tracking of nematode locomotion. Lab Chip 13:650–661. doi:10.1039/c2lc41174a

    Google Scholar 

  • Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341. doi:10.1016/j.electacta.2012.07.024

    Google Scholar 

  • Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505. doi:10.1021/ar900165x

    Google Scholar 

  • Mai TD, Pham TTT, Pham HV, Saìiz J, Ruiz CG, Hauser PC (2013) Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection. Anal Chem 85:2333–2339. doi:10.1021/ac303328g

    Google Scholar 

  • Manica DP, Mitsumori Y, Ewing AG (2003) Characterization of electrode fouling and surface regeneration for a platinum electrode on an electrophoresis microchip. Anal Chem 75(17):4572–4577. doi:10.1021/ac034235f

    Google Scholar 

  • Mannerbro R, Ranlof M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Met 158(13):556–560. doi:10.1016/j.synthmet.2008.03.030

    Google Scholar 

  • Mariella R Jr (2008) Sample preparation: the weak link in microfluidics-based biodetection. Biomed Microdevices 10(6):777–784. doi:10.1007/s10544-008-9190-7

    Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182. doi:10.1039/b820557b

    Google Scholar 

  • Martin RS, Gawron AJ, Lunte SM, Henry CS (2000) Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips. Anal Chem 72(14):3196–3202. doi:10.1021/ac000160t

    Google Scholar 

  • Martin RS, Gawron AJ, Fogarty BA, Regan FB, Dempsey E, Lunte SM (2001) Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry. Analyst 126(3):277–280. doi:10.1039/b009827m

    Google Scholar 

  • Martin RS, Ratzlaff KL, Huynh BH, Lunte SM (2002) In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat. Anal Chem 74(5):1136–1143. doi:10.1021/ac011087p

    Google Scholar 

  • Mecker LC, Martin RS (2008) Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal Chem 80(23):9257–9264. doi:10.1021/ac801614r

    Google Scholar 

  • Mensack MM, Wydallis JB, Lynn NS, Dandy DS, Henry CS (2013) Spatially resolved electrochemical sensing of chemical gradients. Lab Chip 13(2):208–211. doi:10.1039/c2lc41054k

    Google Scholar 

  • Michael AC, Wightman RM (1996) Microelectrodes. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Mir M, Katakis I (2008) Target label-free, reagentless electrochemical DNA biosensor based on sub-optimum displacement. Talanta 75(2):432–441. doi:10.1016/j.talanta.2007.11.035

    Google Scholar 

  • Mir M, Jenkins ATA, Katakis I (2008) Ultrasensitive detection based on an aptamer beacon electron transfer chain. Electrochem Commun 10(10):1533–1536. doi:10.1016/j.elecom.2008.04.040

    Google Scholar 

  • Moeller R, Fritzsche W (2005) Chip-based electrical detection of DNA. IEEE Proc Nanobiotechnol 152(1):47–51. doi:10.1049/ip-nbt:20045020

    Google Scholar 

  • Momotenko D, Cortes-Salazar F, Lesch A, Wittstock G, Girault HH (2011) Microfluidic push-pull probe for scanning electrochemical microscopy. Anal Chem 83(13):5275–5282. doi:10.1021/ac2006729

    Google Scholar 

  • Moscovici M, Bhimjib A, Kelley SO (2013) Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. Lab Chip 13:940–946. doi:10.1039/c2lc41049d

    Google Scholar 

  • Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8(12):2015–2031. doi:10.1039/b812343h

    Google Scholar 

  • Neugebauer S, Evans SR, Aguilar ZP, Mosbach M, Fritsch I, Schuhmann W (2004) Analysis in ultrasmall volumes: microdispensing of picoliter droplets and analysis without protection from evaporation. Anal Chem 76(2):458–463. doi:10.1021/ac0346860

    Google Scholar 

  • Newaz AKM, Markov DA, Prasai D, Bolotin KI (2012) Graphene transistor as a probe for streaming potential. Nano Lett 12(6):2931–2935. doi:10.1021/nl300603v

    Google Scholar 

  • Noh HN, Kim JS (2013) Detection of K-ras oncogene using magnetic beads-quantum dots in microfluidic chip. J Nanosci Nanotechnol 13(8):5240–5244. doi:10.1166/jnn.2013.7054

    Google Scholar 

  • Nyholm L (2005) Electrochemical techniques for lab-on-a-chip applications. Analyst 130(5):599–605. doi:10.1039/b415004j

    Google Scholar 

  • Oliver LM, Dunlop PSM, Byrne JA, Blair IS, Boyle M, McGuigan KG, McAdams ET (2006) An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis. In: Conference proceedings: 28th annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 1, pp 535–538

  • Ordeig O, Ortiz P, Munoz-Berbel X, Demming S, Buttgenbach S, Fernandez-Sanchez C, Llobera A (2012) Dual photonic-electrochemical lab on a chip for online simultaneous absorbance and amperometric measurements. Anal Chem 84(8):3546–3553. doi:10.1021/ac203106x

    Google Scholar 

  • Pai RS, Walsh KM, Crain MM, Roussel TJ Jr, Jackson DJ, Baldwin RP, Keynton RS, Naber JF (2009) Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications. Anal Chem 81(12):4762–4769. doi:10.1021/ac9002529

    Google Scholar 

  • Paixao TRLC, Cardoso JL, Bertotti M (2007) Determination of nitrate in mineral water and sausage samples by using a renewable in situ copper modified electrode. Talanta 71(1):186–191. doi:10.1016/j.talanta.2006.03.040

    Google Scholar 

  • Peng H, Soeller C, Travas-Sejdic J (2007) Novel conducting polymers for DNA sensing. Macromolecules 40(4):909–914. doi:10.1021/ma062060g

    Google Scholar 

  • Pohlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M (2009) Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens Bioelectron 24(9):2766–2771. doi:10.1016/j.bios.2009.01.042

    Google Scholar 

  • Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18(12):1401–1420. doi:10.1016/j.diamond.2009.09.008

    Google Scholar 

  • Radke SA, Alocilja EC (2005) A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosens Bioelectron 20(8):1662–1667. doi:10.1016/j.bios.2004.07.021

    Google Scholar 

  • Rahimi M, Mikkelsen SR (2011) Cyclic biamperometry at micro-interdigitated electrodes. Anal Chem 83(19):7555–7559. doi:10.1021/ac2012703

    Google Scholar 

  • Rassaei L, Marken F (2010) Pulse-voltammetric glucose detection at gold junction electrodes. Anal Chem 82(17):7063–7067. doi:10.1021/ac101303s

    Google Scholar 

  • Ratnakumar BV, Smart MC, Surampudi S (2002) Electrochemical impedance spectroscopy and its applications to lithium ion cells. In: Seventeenth annual battery conference on applications and advances proceedings of conference (Cat No02TH8576). doi:10.1109/bcaa.2002.986414

  • Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25(4):174–181. doi:10.1016/j.tibtech.2007.02.008

    Google Scholar 

  • Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi:10.1016/j.bios.2004.12.001

    Google Scholar 

  • Robinson DL, Venton BJ, Heien M, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49(10):1763–1773. doi:10.1373/49.10.1763

    Google Scholar 

  • Robinson ND, Edman L, Chhowalla M (2012) Graphene electrodes for organic metal-free light-emitting devices. Phys Scr T146:014023

    Google Scholar 

  • Rocchitta G, Secchi O, Alvau MD, Migheli R, Calia G, Bazzu G, Farina D, Desole MS, O’Neill RD, Serra PA (2012) Development and characterization of an implantable biosensor for telemetric monitoring of ethanol in the brain of freely moving rats. Anal Chem 84(16):7072–7079. doi:10.1021/ac301253h

    Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763. doi:10.1039/b714449k

    Google Scholar 

  • Sansuk S, Bitziou E, Joseph MB, Covington JA, Boutelle MG, Unwin PR, Macpherson JV (2013) Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. Anal Chem 85:163–169. doi:10.1021/ac3023586

    Google Scholar 

  • Sassa F, Laghzali H, Fukuda J, Suzuki H (2010) Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures. Anal Chem 82(20):8725–8732. doi:10.1021/ac102289a

    Google Scholar 

  • Sasso LA, Johnston IH, Zheng M, Gupte RK, Uendar A, Zahn JD (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612. doi:10.1007/s10404-012-0980-0

    Google Scholar 

  • Schueller OJA, Brittain ST, Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sens Actuators A Phys 72(2):125–139. doi:10.1016/s0924-4247(98)00218-0

    Google Scholar 

  • Schwarz MA, Galliker B, Fluri K, Kappes T, Hauser PC (2001) A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. Analyst 126(2):147–151. doi:10.1039/b007383k

    Google Scholar 

  • Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R (2008) Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal Chem 80(24):9475–9482. doi:10.1021/ac801607w

    Google Scholar 

  • Shiddiky MJA, Shim Y-B (2007) Trace analysis of DNA: preconcentration, separation, and electrochemical detection in microchip electrophoresis using Au nanoparticles. Anal Chem 79(10):3724–3733. doi:10.1021/ac0701177

    Google Scholar 

  • Shiddiky MJA, Park DS, Shim YB (2005) Detection of polymerase chain reaction fragments using a conducting polymer-modified screen-printed electrode in a microfluidic device. Electrophoresis 26(24):4656–4663. doi:10.1002/elps.200500447

    Google Scholar 

  • Shiddiky MJA, Park H, Shim Y-B (2006) Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection. Anal Chem 78(19):6809–6817. doi:10.1021/ac0606002

    Google Scholar 

  • Shinwari MW, Zhitomirsky D, Deen IA, Selvaganapathy PR, Deen MJ, Landheer D (2010) Microfabricated reference electrodes and their biosensing applications. Sensors 10(3):1679–1715. doi:10.3390/s100301679

    Google Scholar 

  • Sin ML, Gao J, Liao JC, Wong PK (2011) System integration—a major step toward lab on a chip. J Biol Eng 5:6

    Google Scholar 

  • Sinkala E, McCutcheon JE, Schuck MJ, Schmidt E, Roitman MF, Eddington DT (2012) Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12(13):2403–2408. doi:10.1039/c2lc40168a

    Google Scholar 

  • Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129(11):995–1000. doi:10.1039/b410547h

    Google Scholar 

  • Suehiro J, Noutomi D, Shutou M, Hara M (2003) Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen-antibody reaction. J Electrostat 58(3–4):229–246. doi:10.1016/s0304-3886(03)00062-7

    Google Scholar 

  • Sun XH, Gillis KD (2006) On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Anal Chem 78(8):2521–2525. doi:10.1021/ac052037d

    Google Scholar 

  • Swami NS, Chou CF, Terberueggen R (2005) Two-potential electrochemical probe for study of DNA immobilization. Langmuir 21(5):1937–1941. doi:10.1021/la0493767

    Google Scholar 

  • Swensen JS, Xiao Y, Ferguson BS, Lubin AA, Lai RY, Heeger AJ, Plaxco KW, Soh HT (2009) Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J Am Chem Soc 131(12):4262–4266. doi:10.1021/ja806531/z

    Google Scholar 

  • Swinney K, Bornhop DJ (2000) Detection in capillary electrophoresis. Electrophoresis 21(7):1239–1250. doi:10.1002/(sici)1522-2683(20000401)21:7<1239:aid-elps1239>3.0.co;2-6

    Google Scholar 

  • Takhistov P (2004) Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate. Biosens Bioelectron 19(11):1445–1456. doi:10.1016/j.bios.2003.08.015

    Google Scholar 

  • Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of l-tryptophan, l-tyrosine and l-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80(5):2182–2186. doi:10.1016/j.talanta.2009.11.027

    Google Scholar 

  • Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489. doi:10.1016/j.trac.2005.11.008

    Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2008) DNA stabilization and hybridization detection on porous silicon surface by EIS and total reflection FT-IR spectroscopy. Electroanalysis 20(17):1845–1850. doi:10.1002/elan.200804268

    Google Scholar 

  • Vandaveer WR, Fritsch I (2002) Measurement of ultrasmall volumes using anodic stripping voltammetry. Anal Chem 74(14):3575–3578. doi:10.0121/ao011036s

    Google Scholar 

  • Vazquez M, Frankenfeld C, Tomazelli Coltro WK, Carrilho E, Diamond D, Lunte SM (2010) Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips. Analyst 135(1):96–103. doi:10.1039/b908985c

    Google Scholar 

  • Vessman J, Stefan RI, Van Staden JF, Danzer K, Lindner W, Burns DT, Fajgelj A, Muller H (2001) Selectivity in analytical chemistry—(IUPAC Recommendations 2001). Pure Appl Chem 73(8):1381–1386. doi:10.1351/pac200173081381

    Google Scholar 

  • Wallingford RA, Ewing AG (1987) Capillary zone electrophoresis with electrochemical detection. Anal Chem 59(14):1762–1766. doi:10.1021/ac00141a005

    Google Scholar 

  • Wang J (2002) Portable electrochemical systems. Trac Trends Anal Chem 21(4):226–232. doi:10.1016/s0165-9936(02)00402-8

    Google Scholar 

  • Wang CL, Madou M (2005) From MEMS to NEMS with carbon. Biosens Bioelectron 20(10):2181–2187. doi:10.1016/j.bios.2004.09.034

    Google Scholar 

  • Wang J, Pumera M (2002) Dual conductivity/amperometric detection system for microchip capillary electrophoresis. Anal Chem 74(23):5919–5923. doi:10.1021/ac020416q

    Google Scholar 

  • Wang J, Tian BM, Sahlin E (1999) Micromachined electrophoresis chips with thick-film electrochemical detectors. Anal Chem 71(23):5436–5440. doi:10.1021/ac990807d

    Google Scholar 

  • Wang J, Chen G, Chatrathi MP, Fujishima A, Tryk DA, Shin D (2003a) Microchip capillary electrophoresis coupled with a boron-doped diamond electrode-based electrochemical detector. Anal Chem 75(4):935–939. doi:10.1021/ac0262053

    Google Scholar 

  • Wang J, Chen G, Pumera M (2003b) Microchip separation and electrochemical detection of amino acids and peptides following precolumn derivatization with naphthalene-2,3-dicarboxyaldehyde. Electroanalysis 15(10):862–865. doi:10.1002/elan.200390106

    Google Scholar 

  • Wang J, Ibanez A, Chatrathi MP (2003c) On-chip integration of enzyme and immunoassays: simultaneous measurements of insulin and glucose. J Am Chem Soc 125(28):8444–8445. doi:10.1021/ja036067e

    Google Scholar 

  • Wang J, Chen G, Muck A, Shin DC, Fujishima A (2004a) Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. J Chromatogr A 1022(1–2):207–212. doi:10.1016/j.chroma.2003.09.044

    Google Scholar 

  • Wang J, Chen G, Wang M, Chatrathi MP (2004b) Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129(6):512–515. doi:10.1039/b401503g

    Google Scholar 

  • Wang CL, Jia GY, Taherabadi LH, Madou MJ (2005a) A novel method for the fabrication of high-aspect ratio C-MEMS structures. J Microelectromech Syst 14(2):348–358. doi:10.1109/jmems.2004.839312

    Google Scholar 

  • Wang J, Mannino S, Camera C, Chatrathi MP, Scampicchio M, Zima J (2005b) Microchip capillary electrophoresis with amperometric detection for rapid separation and detection of seleno amino acids. J Chromatogr A 1091(1–2):177–182. doi:10.1016/j.chroma.2005.07.055

    Google Scholar 

  • Wang AJ, Xu JJ, Chen HY (2006) Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. J Chromatogr A 1107(1–2):257–264. doi:10.1016/j.chroma.2005.12.040

    MathSciNet  Google Scholar 

  • Wang Y, Chen H, He Q, Soper SA (2008) A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. Electrophoresis 29(9):1881–1888. doi:10.1002/elps.200700377

    Google Scholar 

  • Wasalathanthri DP, Mani V, Tang CK, Rusling JF (2011) Microfluidic electrochemical array for detection of reactive metabolites formed by cytochrome P450 enzymes. Anal Chem 83(24):9499–9506. doi:10.1021/ac202269t

    Google Scholar 

  • Wei Y, Wong LP, Toh C-S (2013) Fuel cell virus sensor using virus capture within antibody-coated nanochannels. Anal Chem 85:1350–1357. doi:10.1021/ac302942y

    Google Scholar 

  • Welch D, Christen JB (2013) Seamless integration of CMOS and microfluidics using flip chip bonding. J Micromech Microeng 23(3). doi:10.1088/0960-1317/23/3/035009

  • Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid State Lett 13(9):D109–D111. doi:10.1149/1.3456590

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi:10.1038/nature05058

    Google Scholar 

  • Wolfrum B, Zevenbergen M, Lemay S (2008) Nanofluidic redox cycling amplification for the selective detection of catechol. Anal Chem 80(4):972–977. doi:10.1021/ac7016647

    Google Scholar 

  • Woolley AT, Lao KQ, Glazer AN, Mathies RA (1998) Capillary electrophoresis chips with integrated electrochemical detection. Anal Chem 70(4):684–688. doi:10.1021/ac971135z

    Google Scholar 

  • Wu JL, Zhu JZ, Zhang GX, Lin XR, Cheng NY (1996) Fabrication and application of a diamond-film glucose biosensor based on a H2O2 microarray electrode. Anal Chim Acta 327(2):133–137

    Google Scholar 

  • Xie J, Miao YN, Shih J, He Q, Liu J, Tai YC, Lee TD (2004) An electrochemical pumping system for on-chip gradient generation. Anal Chem 76(13):3756–3763. doi:10.1021/ac035188u

    Google Scholar 

  • Xu X, Zhang S, Chen H, Kong J (2009) Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments. Talanta 80(1):8–18. doi:10.1016/j.talanta.2009.06.039

    Google Scholar 

  • Yan JL, Du Y, Liu JF, Cao WD, Sun SH, Zhou WH, Yang XR, Wang EK (2003) Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique. Anal Chem 75(20):5406–5412. doi:10.1021/ac034017m

    Google Scholar 

  • Yi CQ, Zhang Q, Li CW, Yang J, Zhao JL, Yang MS (2006) Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem 384(6):1259–1268. doi:10.1007/s00216-005-0252-x

    Google Scholar 

  • Yu XB, Lv R, Ma ZQ, Liu ZH, Hao YH, Li QZ, Xu DK (2006) An impedance array biosensor for detection of multiple antibody-antigen interactions. Analyst 131(6):745–750. doi:10.1039/b517148b

    Google Scholar 

  • Zemann AJ (2001) Conductivity detection in capillary electrophoresis. Trends Anal Chem 20(6–7):346–354. doi:10.1016/s0165-9936(01)00076-0

    Google Scholar 

  • Zevenbergen MAG, Krapf D, Zuiddam MR, Lemay SG (2007) Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. Nano Lett 7(2):384–388. doi:10.1021/nl062571g

    Google Scholar 

  • Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG (2009) Electrochemical correlation spectroscopy in nanofluidic cavities. Anal Chem 81(19):8203–8212. doi:10.1021/ac9014885

    Google Scholar 

  • Zevenbergen MAG, Singh PS, Goluch ED, Wolfrum BL, Lemay SG (2011) Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett 11(7):2881–2886. doi:10.1021/nl2013423

    Google Scholar 

  • Zhang XJ, Wang J, Ogorevc B, Spichiger UE (1999) Glucose nanosensor based on Prussian-blue modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanalysis 11(13):945–949. doi:10.1002/(sici)1521-4109(199909)11:13<945:aid-elan945>3.3.co;2-z

    Google Scholar 

  • Zhang K, Zhao L-B, Guo S-S, Shi B-X, Lam T-L, Leung Y-C, Chen Y, Zhao X-Z, Chan HLW, Wang Y (2010) A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectron 26(2):935–939. doi:10.1016/j.bios.2010.06.039

    Google Scholar 

  • Zhang T, Lai C-Z, Fierke MA, Stein A, Bühlmann P (2012) Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact. Anal Chem 84(18):7771–7778. doi:10.1021/ac3011507

    Google Scholar 

  • Zhao W, van den Berg A (2008) Lab on paper. Lab Chip 8(12):1988–1991. doi:10.1039/b814043j

    Google Scholar 

  • Zhao Q, Gan ZH, Zhuang QK (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14(23):1609–1613. doi:10.1002/elan.200290000

    Google Scholar 

  • Zhou Y, Zhi J (2009) The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5):1189–1196. doi:10.1016/j.talanta.2009.05.026

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by NSF, provided through CBET 0636254, “SGER: Exploration and Quantification of Ion Gradients in a Capillary Microdevice” and valuable instruction and discussions with David O.Wipf.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne R. Minerick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gencoglu, A., Minerick, A.R. Electrochemical detection techniques in micro- and nanofluidic devices. Microfluid Nanofluid 17, 781–807 (2014). https://doi.org/10.1007/s10404-014-1385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1385-z

Keywords

Navigation