Skip to main content
Log in

Boundary layer analysis and heat transfer of a nanofluid

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A theoretical model for nanofluid flow, including Brownian motion and thermophoresis, is developed and analysed. Standard boundary layer theory is used to evaluate the heat transfer coefficient near a flat surface. The model is almost identical to previous models for nanofluid flow which have predicted an increase in the heat transfer with increasing particle concentration. In contrast our work shows a marked decrease indicating that under the assumptions of the model (and similar ones) nanofluids do not enhance heat transfer. It is proposed that the discrepancy between our results and previous ones is due to a loose definition of the heat transfer coefficient and various ad hoc assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acheson DJ (1990) Elementary fluid dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Astumian RD (2007) Coupled transport at the nanoscale: the unreasonable effectiveness of equilibrium theory. Proc Natl Acad Sci 104(1):3–4

    Article  Google Scholar 

  • Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Bird R, Stewart W, Lightfoot E (2007) Transport phenomena. Wiley, Hoboken, NJ

    Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128:240–250

    Article  Google Scholar 

  • Buongiorno J, Venerus D, Prabhat N, McKrell T, Townsend J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Article  Google Scholar 

  • Brenner H, Bielenberg JR (2005) A continuum approach to phoretic motions: thermophoresis. Phys A 355:251–273

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52:789–793

    Article  Google Scholar 

  • Das S, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574

    Article  Google Scholar 

  • Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev 11:797–817

    Article  Google Scholar 

  • Ding Y, Chen H, He Y, Lapkin A, Yeganeh A, Siller L, Butenko YV (2007) Forced convective heat transfer of nanofluids. Adv Powder Technol 18:813–824

    Article  Google Scholar 

  • Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci 103(52):19678–19682

    Article  Google Scholar 

  • Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116

    Article  Google Scholar 

  • Haddad Z, Abu-Nada E, Oztop HF, Mataoui A (2012) Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int J Therm Sci 57:152–162

    Article  Google Scholar 

  • Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of water-based Al 2 O 3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199

    Article  MATH  Google Scholar 

  • Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26(17–18):2457–2463

    Article  Google Scholar 

  • Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  • Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428

    Article  MATH  Google Scholar 

  • Kleinstreuer C, Feng Y (2011) Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett 6:229

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

  • Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  • Li CH, Peterson GP (2010) Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids). Adv Mech Eng 2010, Article ID 742739

  • Maiga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviors of nanofluids in a uniformly heated tube. Superlattices Microstruct 35:543–557

    Article  Google Scholar 

  • McNab GS, Meisen A (1973) Thermophoresis in liquids. J Colloid Interface Sci 44(2):339–346

    Article  Google Scholar 

  • Myers TG (2009) Optimizing the exponent in the heat balance and refined integral methods. Int Commun Heat Mass Transf 36(2):143–147

    Article  Google Scholar 

  • Myers TG (2010a) Optimal exponent heat balance and refined integral methods applied to Stefan problems. Int J Heat Mass Transf 53:1119–1127

    Article  MATH  Google Scholar 

  • Myers TG (2010b) An approximate solution method for boundary layer flow of a power law fluid over a flat plate. Int J Heat Mass Transf 53:2337–2346

    Article  MATH  Google Scholar 

  • Myers TG, Mitchell SL, Font F (2012) Energy conservation in the one-phase supercooled Stefan problem. Int Commun Heat Mass Transf 39:1522–1525

    Article  Google Scholar 

  • Myers TG, MacDevette MM, Ribera H (2013) A time dependent model to determine the thermal conductivity of a nanofluid. J Nanopart Res 15:1775

    Article  Google Scholar 

  • Popa C, Polidori G, Arfaoui A, Fohanno S (2011) Heat and mass transfer in external boundary layer flows using nanofluids. In: Hossain M (ed) Heat and Mass Transfer - Modeling and Simulation. InTech. http://www.intechopen.com/download/get/type/pdfs/id/20408

  • Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model or the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595

    Article  Google Scholar 

  • Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf 39(8–9):775–784

    Article  Google Scholar 

  • Savino R, Paterna D (2008) Thermodiffusion in nanofluids under different gravity conditions. Phys Fluids 20:017101

    Article  Google Scholar 

  • Vigolo D, Rusconi R, Stone HA, Piazza R (2010) Thermophoresis: microfluidics characterization and separation. Soft Matter 6:3489–3493

    Article  Google Scholar 

  • Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transfer 13:474–480

    Article  Google Scholar 

  • Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64

    Article  MathSciNet  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  • Yang Y, Zhong ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116

    Article  Google Scholar 

Download references

Acknowledgments

M.M.M. gratefully acknowledges the support of a PhD grant from the Centre de Recerca Matemática. T.M. gratefully acknowledges the support of this research through the Marie Curie International Reintegration Grant Industrial applications of moving boundary problems Grant No. FP7-256417 and Ministerio de Ciencia e Innovación Grant MTM2011-23789. B.W. also received funding from the Marie Curie International Reintegration Grant. T.M. acknowledges the kind support of Prof. J.B. van den Berg and the Mathematics Department of the Vrije Universiteit of Amsterdam, where this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDevette, M.M., Myers, T.G. & Wetton, B. Boundary layer analysis and heat transfer of a nanofluid. Microfluid Nanofluid 17, 401–412 (2014). https://doi.org/10.1007/s10404-013-1319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1319-1

Keywords

Navigation