Skip to main content
Log in

Simultaneous electrokinetic flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Microfluidics is a rapidly growing field that offers great potential for many biological and analytical applications. There are important advantages that miniaturization has to offer, such as portability, shorter response times, higher resolution and sensitivity. There is growing interest on the development of microscale techniques. Among these, electrokinetic phenomena have gained significant importance due to their flexibility for handling bioparticles. Dielectrophoresis (DEP), the manipulation of particles in non-uniform electric fields due to polarization effects, has become one of leading electrokinetic techniques. DEP has been successfully employed to manipulate proteins, DNA and a wide array of cells, form bacteria to cancer. Contactless DEP (cDEP) is a novel dielectrophoretic mode with attractive characteristics. In cDEP, non-uniform electric fields are created using insulating structures and external electrodes that are separated from the sample by a thin insulating barrier. This prevents bioparticle damage and makes cDEP a technique of choice for many biomedical applications. In this study, a combination of cDEP generated with AC potentials and electrokinetic liquid pumping generated with DC potentials is employed to achieve highly controlled particle trapping and manipulation. This allows for lower applied potentials than those used in traditional insulator-based DEP and requires a simpler sytem that does not employ an external pump. This is the first demonstration of electrokinetic (EK) pumping in which the driving electrodes are not in direct contact with the sample fluid. Multiphysics simulations were used to aid with the design of the system and predict the regions of particle trapping. Results show the advantages of combining AC-cDEP with DC EK liquid pumping for dynamic microparticle trapping, release and enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bao N, Wang J, Lu C (2008) Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391:933–942

    Article  Google Scholar 

  • Barz DPJ, Ehrhard P (2005) Model and verification of electrokinetic flow and transport in a micro-electrophoresis device. Lab Chip 5:949–958

    Article  Google Scholar 

  • Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chávez-Santoscoy AV, Martínez Chapa SO (2009) Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip 9:2896–2901

    Article  Google Scholar 

  • Baylon-Cardiel JL, Jesús-Pérez NM, Chávez-Santoscoy AV, Lapizco-Encinas BH (2010) Controlled microparticle manipulation employing low frequency alternating electric fields in an array of insulators. Lab Chip 10:3235–3242

    Article  Google Scholar 

  • Bhattacharya S, Chao T-C, Ros A (2011) Insulator-based dielectrophoretic single particle and single cancer cell trapping. Electrophoresis 32:2550–2558

    Article  Google Scholar 

  • Chávez-Santoscoy AV, Baylon-Cardiel JL, Moncada-Hernández H, Lapizco-Encinas BH (2011) On the selectivity of an insulator-based dielectrophoretic microdevice. Sep Sci Technol 46:384–394

    Article  Google Scholar 

  • Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731

    Article  Google Scholar 

  • Docoslis A, Kalogerakis N, Behie LA, Kaler K (1997) A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media. Biotechnol Bioeng 54:239–250

    Article  Google Scholar 

  • Ermolina I, Milner J, Morgan H (2006) Dielectrophoretic investigation of plant virus particles: cow pea mosaic virus and tobacco mosaic virus. Electrophoresis 27:3939–3948

    Article  Google Scholar 

  • Felten M, Geggier P, Jäger M, Duschl C (2006) Controlling electrohydrodynamic pumping in microchannels through defined temperature fields. Phys Fluids 18:051707

    Google Scholar 

  • Feng J-F, Liu J, Zhang X-Z, Zhang L, Jiang J-Y, Nolta J, Zhao M (2012) Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells 30:349–355

    Article  Google Scholar 

  • Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32:2466–2487

    Article  Google Scholar 

  • Gallo-Villanueva RC, Rodriguez-Lopez CE, Diaz-De-La-Garza RI, Reyes-Betanzo C, Lapizco-Encinas BH (2009) DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Electrophoresis 30:4195–4205

    Article  Google Scholar 

  • Gallo-Villanueva RC, Jesús-Pérez NM, Martínez-López JI, Pacheco A, Lapizco-Encinas BH (2011a) Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluid Nanofluid 10:1305–1315

    Article  Google Scholar 

  • Gallo-Villanueva RC, Pérez-González VH, Davalos RV, Lapizco-Encinas BH (2011b) Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis 32:2456–2465

    Article  Google Scholar 

  • Gencoglu A, Camacho-Alanis F, Nguyen VT, Nakano A, Ros A, Minerick AR (2011) Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis 32:2436–2447

    Article  Google Scholar 

  • Hawkins BG, Kirby BJ (2010) Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis 31:3622–3633

    Article  Google Scholar 

  • Henslee EA, Sano MB, Rojas AD, Schmelz EM, Davalos RV (2011) Selective concentration of human cancer cells using contactless dielectrophoresis. Electrophoresis 32:2523–2529

    Article  Google Scholar 

  • Homsy A, Linder V, Lucklum F, de Rooij NF (2007) Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sens Actuators B Chem 123:636–646

    Article  Google Scholar 

  • Hughes MP, Hoettges KF (2008) Bacterial concentration, separation and analysis by dielectrophoresis. In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 895–907

    Chapter  Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Ivory CF, Srivastava SK (2011) Direct current dielectrophoretic simulation of proteins using an array of circular insulating posts. Electrophoresis 32:2323–2330

    Article  Google Scholar 

  • Jaramillo MdC, Torrents E, Martínez-Duarte R, Madou MJ, Juárez A (2010) On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31:2921–2928

    Article  Google Scholar 

  • Jones P, Staton S, Hayes M (2011) Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 401:2103–2111

    Article  Google Scholar 

  • Kang YJ, Li DQ (2009) Electrokinetic motion of particles and cells in microchannels. Microfluid Nanofluid 6:431–460

    Article  Google Scholar 

  • Kwon J-S, Maeng J-S, Chun M-S, Song S (2008) Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations. Microfluid Nanofluid 5:23–31

    Article  Google Scholar 

  • Lapizco-Encinas BH, Ozuna-Chacón S, Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and DC electric fields. J Chromatogr A 1206:45–51

    Article  Google Scholar 

  • Leonard KM, Minerick AR (2011) Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: changes in cross-over frequency. Electrophoresis 32:2512–2522

    Article  Google Scholar 

  • Lin Q, Yang BZ, Xie J, Tai YC (2007) Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion. J Micromech Microeng 17:220–228

    Article  Google Scholar 

  • Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15:2309–2316

    Article  Google Scholar 

  • Martinez-Duarte R, Gorkin-Iii RA, Abi-Samra K, Madou MJ (2010) The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10:1030–1043

    Article  Google Scholar 

  • Martinez-Duarte R, Renaud P, Madou MJ (2011) A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis 32:2385–2392

    Google Scholar 

  • Matteucci M, Perennes F, Marmiroli B, Miotti P, Vaccari L, Gosparini A, Turchet A, Di Fabrizio E (2006) Compact micropumping system based on LIGA fabricated microparts. Microelectron Eng 83:1288–1290

    Article  Google Scholar 

  • Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396(5):1805–1816

    Google Scholar 

  • Moncada-Hernández H, Baylon-Cardiel JL, Pérez-González VH, Lapizco-Encinas BH (2011) Insulator-based dielectrophoresis of microorganisms: theoretical and experimental results. Electrophoresis 32:2502–2511

    Article  Google Scholar 

  • Pohl HA (1958) Some effects of nonuniform fields on dielectrics. J Appl Phys 29:1182–1188

    Article  Google Scholar 

  • Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79:4552–4557

    Article  Google Scholar 

  • Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D (2010) Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation. Anal Chem 82:7141–7149

    Article  Google Scholar 

  • Sano MB, Caldwell JL, Davalos RV (2011a) Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Biosens Bioelectron 30:13–20

    Article  Google Scholar 

  • Sano MB, Henslee EA, Schmelz E, Davalos RV (2011b) Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Electrophoresis 32:3164–3171

    Article  Google Scholar 

  • Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11:997–1006

    Article  Google Scholar 

  • Shafiee H, Caldwell JL, Davalos RV (2010a) A microfluidic system for biological particle enrichment using contactless dielectrophoresis. Jala 15:224–232

    Google Scholar 

  • Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV (2010b) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–445

    Article  Google Scholar 

  • Sridharan S, Zhu J, Hu G, Xuan X (2011) Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis. Electrophoresis 32:2274–2281

    Google Scholar 

  • Srivastava SK, Artemiou A, Minerick AR (2011a) Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. Electrophoresis 32:2530–2540

    Article  Google Scholar 

  • Srivastava SK, Gencoglu A, Minerick AR (2011b) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bioanal Chem 399:301–321

    Article  Google Scholar 

  • Sun Y-S, Peng S-W, Lin K-H, Cheng J-Y (2012) Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds. Biomicrofluidics 6:014102–014114

    Article  Google Scholar 

  • Tandon V, Bhagavatula SK, Nelson WC, Kirby BJ (2008) Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29:1092–1101

    Article  Google Scholar 

  • Ugaz VM, Christensen JL (2007) Electrophoresis in microfluidic system. In: Hardt S, Schonfeld F (eds) Microfluidic technologies for miniaturized analysis systems. Springer, New York, pp 393–438

    Chapter  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Voyer D, Frenea-Robin M, Buret F, Nicolas L (2010) Improvements in the extraction of cell electric properties from their electrorotation spectrum. Bioelectrochemistry 79:25–30

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26:135–150

    Article  Google Scholar 

  • Yang F, Yang X, Jiang H, Bulkhaults P, Wood P, Hrushesky W, Wang G (2010) Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4:013204–013213

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Multiscale Bio-Engineered Devices and Systems (MBEDS) group and the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech. Additional funding was provided by CONACYT and Cátedra de Investigación CAT142 of Tecnológico de Monterrey. The authors would like to thank the members of the VT BEMS laboratory, especially Alireza Salmanzadeh, for their help fabricating the silicon master stamps.

Conflict of interest

Sano and Davalos have a pending patent for contactless dielectrophoresis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Sano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, M.B., Gallo-Villanueva, R.C., Lapizco-Encinas, B.H. et al. Simultaneous electrokinetic flow and dielectrophoretic trapping using perpendicular static and dynamic electric fields. Microfluid Nanofluid 15, 599–609 (2013). https://doi.org/10.1007/s10404-013-1175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1175-z

Keywords

Navigation