Microfluidics and Nanofluidics

, Volume 14, Issue 1, pp 345–358

Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators

  • Coleman Murray
  • David McCoul
  • Elodie Sollier
  • Taylor Ruggiero
  • Xiaofan Niu
  • Qibing Pei
  • Dino Di Carlo
Research Paper

DOI: 10.1007/s10404-012-1055-y

Cite this article as:
Murray, C., McCoul, D., Sollier, E. et al. Microfluid Nanofluid (2013) 14: 345. doi:10.1007/s10404-012-1055-y

Abstract

With the expanding role of microfluidics in biology and medicine, methodologies for on-chip fluid sample manipulation become increasingly important. While conventional methods of microfluidic actuation, such as pneumatic and piezoelectric valves, are well characterized and commonly used, they require bulky external setups and complex fabrication. To address the need for a simple microfluidic actuator, we introduce a hybrid device consisting of an electroactive polymer that controls the shape of a microfluidic channel with an applied bias voltage. The electro-adaptive microfluidic (EAM) device allowed tuning of fluidic resistances by up to 18.1 %. In addition, we have shown that the EAM device is able to clear microchannel blockages by actively expanding the channel cross section. Biocompatibility tests show the EAM device has little effect on cell viability within a voltage range and thus has the potential to be utilized in bio-microfluidic systems. All of these results indicate that this EAM device design may find use in applications from cell sorting and trapping and self-clearing channels, to the reduction of lab-on-a-chip complexity via tunable channel geometries.

Keywords

Electro-adaptive microfluidics (EAMs) Microchannel actuation Electroactive polymer Dielectric elastomer Polymer actuator Microelectromechanical systems (MEMS) 

Supplementary material

10404_2012_1055_MOESM1_ESM.pdf (139 kb)
Supplementary material (PDF 138 kb)

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Coleman Murray
    • 1
  • David McCoul
    • 2
  • Elodie Sollier
    • 1
  • Taylor Ruggiero
    • 1
  • Xiaofan Niu
    • 2
  • Qibing Pei
    • 2
  • Dino Di Carlo
    • 1
  1. 1.Department of Bioengineering, Henry Samueli School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA