Skip to main content
Log in

Numerical study of the microdroplet actuation switching frequency in digital microfluidic biochips

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this article, an electrohydrodynamic approach is used to study the microdroplet actuation in contemporary digital microfluidic biochips. The model is employed to analyze the microdroplet motion, and investigate the effects of the key parameters on the devices performance. The modeling results are compared to the experimental observations, and it is shown that the model provides an accurate representation of digital microfluidic transport. An extensive parametric variation is used to derive the maximum actuation switching frequency for ranges of the microdroplet size, gap spacing between the top and bottom plates and electrode pitch size. As a result, scalability of the devices is investigated, and it is shown that the microdroplet transfer rates change inversely with the system size, and microdroplet average velocity is nearly the same for different system scales. As a result of this study, an adjustable force-based actuation switching frequency implementation is proposed, and it is shown that faster microdroplet motion is obtained by in situ adjusting of the switching frequency. Finally, it has been observed that fastest microdroplet motion, despite similar studies conducted in the literature, is not achieved via actuating the next electrode as soon as the microdroplet touches it. Indeed, the switching frequency spectrum is dependent on the physical and geometrical properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4(4):349–355

    Article  Google Scholar 

  • Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21(8):920–925

    Article  Google Scholar 

  • Afkhami S, Bussmann M (2008) Height functions for applying contact angles to 2D VOF simulations. Int J Numer Methods Fluids 57(4):453–472

    Article  MATH  Google Scholar 

  • Ahmadi A, Najjaran H, Holzman JF, Hoorfar M (2009) Two-dimensional flow dynamics in digital microfluidic systems. J Micromech Microeng 19(6):065003

    Google Scholar 

  • Ahmadi A, Holzman JF, Najjaran H, Hoorfar M (2011) Electrohydrodynamic modeling of microdroplet transient dynamics in electrocapillary-based digital microfluidic devices. Microfluid Nanofluid 10(5):1019–1032

    Article  Google Scholar 

  • Arzpeyma A, Bhaseen S, Dolatabadi A, Wood-Adams P (2008) A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids Surf A Physicochem Eng Aspects 323(1–3):28–35

    Article  Google Scholar 

  • Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503

    Article  Google Scholar 

  • Baird E, Young P, Mohseni K (2007) Electrostatic force calculation for an EWOD-actuated droplet. Microfluid Nanofluid 3(6):635–644

    Article  Google Scholar 

  • Bhattacharjee B, Najjaran H (2010) Simulation of droplet position control in digital microfluidic systems. J Dyn Syst Meas Control 132(1):014501-3

    Google Scholar 

  • Blake T, Coninck JD (2002) The influence of solid liquid interactions on dynamic wetting. Adv Colloid Interface Sci 96(1–3):21–36

    Article  Google Scholar 

  • Brassard D, Malic L, Normandin F, Tabrizian M, Veres T (2008) Water-oil core–shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8(8):1342–1349

    Article  Google Scholar 

  • Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):086101

    Google Scholar 

  • Bussmann M, Mostaghimi J, Chandra S (1999) On a three-dimensional volume tracking model of droplet impact. Phys Fluids 11:1406–1417

    Article  MATH  Google Scholar 

  • Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8(3):215–225

    Article  Google Scholar 

  • Cho SK, Moon H, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2(5):435–446

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible. Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  • Fair RB (2010) Scaling fundamentals and applications of digital microfluidic microsystems. Microfluid Based Microsyst 0:285–304

  • Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24(1):10–24

    Article  Google Scholar 

  • Fan SK, Hsieh TH, Lin DY (2009) General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9(9):1236–1242

    Article  Google Scholar 

  • Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid Nanofluid 4(3):159–165

    Article  Google Scholar 

  • Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22(14):6234–6237

    Article  Google Scholar 

  • Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82(6):2310–2316

    Article  Google Scholar 

  • Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81(1):330–335

    Article  Google Scholar 

  • Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15(6):1184–1187

    Article  Google Scholar 

  • Kang KH (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322

    Google Scholar 

  • Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2010) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluid Nanofluid 8(1):47–56

    Article  Google Scholar 

  • Kumari N, Bahadur V, Garimella SV (2008) Electrical actuation of dielectric droplets. J Micromech Microeng 18(8):5018

    Article  Google Scholar 

  • Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A Phys 95(2–3):259–268

    Article  Google Scholar 

  • Lomax H, Pulliam TH, Zingg DW (2001) Fundamentals of computational fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  • Luk VN, Wheeler AR (2009) A digital microfluidic approach to proteomic sample processing. Anal Chem 81(11):4524–4530

    Article  Google Scholar 

  • Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic loc devices. Lab Chip 10(4):418–431

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogeneous enzyme assays. Anal Chem 80(5):1614–1619

    Article  Google Scholar 

  • Moon H, Cho SK, Garrell RL (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087

    Article  Google Scholar 

  • Moon H, Wheeler AR, Garrell RL, Loo JA, Kim CJ (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6(9):1213–1219

    Article  Google Scholar 

  • Nichols KP, Gardeniers HJGE (2007) A digital microfluidic system for the investigation of pre-steady-state enzyme kinetics using rapid quenching with MALDI-TOF mass spectrometry. Anal Chem 79(22):8699–8704

    Article  Google Scholar 

  • Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    Article  Google Scholar 

  • Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuators B Chem 87(1):201–206

    Article  Google Scholar 

  • SadAbadi H, Packirisamy M, Dolatabadi A, Wuthrich R (2010) Effects of electrode switching sequence on EWOD droplet manipulation: a simulation study. In: Proceedings of the ASME FEDSM-ICNMM, vol 31212, pp 1–6

  • Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091

    Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4(4):310–315

    Article  Google Scholar 

  • Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of the conference on design, automation and test in Europe: Proceedings, European design and automation association, Munich, pp 323–328

  • Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6(1):96–104

    Article  Google Scholar 

  • Wheeler AR, Moon H, Bird CA, Loo RRO, Kim CJ, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77(2):534–540

    Article  Google Scholar 

  • Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4(4):265–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Hoorfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, A., Devlin, K.D. & Hoorfar, M. Numerical study of the microdroplet actuation switching frequency in digital microfluidic biochips. Microfluid Nanofluid 12, 295–305 (2012). https://doi.org/10.1007/s10404-011-0872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0872-8

Keywords

Navigation