Ajdari A (2000) AC pumping of liquids. Phys Rev E 61:R45–R48

CrossRefAnderson JL (1989) Colloid transport by interfacial forces. Ann Rev Fluid Mech 21:61–99

CrossRefBard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

Bazant MZ (2008) Nonlinear electrokinetic phenomena. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics, part 14, vol 14. Springer, New York, pp 1461–1470

CrossRefBazant MZ, Ben Y (2006) Theoretical prediction of fast 3d AC electro-osmotic pumps. Lab Chip 6:1455–1461

CrossRefBazant MZ, Squires TM (2004) Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys Rev Lett 92:066101

CrossRefBazant MZ, Squires TM (2010) Induced-charge electrokinetic phenomena. Curr Opin Colloid Interface Sci (in press)

Bazant MZ, Kilic MS, Storey B, Ajdari A (2009) Towards an understanding of nonlinear electrokinetics at large voltages in concentrated solutions. Adv Colloid Interface Sci 152:48–88

CrossRefBen Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238

MathSciNetMATHCrossRefBikerman JJ (1940) Electrokinetic equations and surface conductance. A survey of the diffuse double layer theory of colloidal solutions. Trans Faraday Soc 36:154–160

CrossRefBrown ABD, Smith CG, Rennie AR (2001) Pumping of water with AC electric fields applied to asymmetric pairs of microelectrodes. Phys Rev E 63:016305

CrossRefBurch DN, Bazant MZ (2008) Design principle for improved three-dimensional AC electro-osmotic pumps. Phys Rev E 77:055303(R)

CrossRefChu KT, Bazant MZ (2005) Electrochemical thin films at and above the classical limiting current. SIAM J Appl Math 65:1485–1505

MathSciNetMATHCrossRefChu KT, Bazant MZ (2007) Surface conservation laws at microscopically diffuse interfaces. J Colloid Interface Sci 315:319–329

CrossRefDukhin AS (1986) Pair interaction of disperse particles in electric-field. 3. Hydrodynamic interaction of ideally polarizable metal particles and dead biological cells. Colloid J USSR 48:376–381

Dukhin AS (1993) Biospecific mechanism of double layer formation and peculiarities of cell electrophoresis. Colloids Surf A 73:29–48

CrossRefDukhin SS, Derjaguin BV (1974) Surface and colloid science, Chapter 2, vol 7. Academic Press, New York

Dukhin AS, Murtsovkin VA (1986) Pair interaction of particles in electric field. 2. Influence of polarization of double layer of dielectric particles on their hydrodynamic interaction in stationary electric field. Colloid J USSR 48(2):203–209

Gamayunov NI, Murtsovkin VA, Dukhin AS (1986) Pair interaction of particles in electric field. Part 1: features of hydrodynamic interaction of polarized particles. Colloid J USSR 48(2):197–203

Gamayunov NI, Mantrov GI, Murtsovkin VA (1992) Investigation of the flows induced by an external electric field in the vicinity of conducting particles. J of Colloid 54(1):26–30

Gangwal S, Cayre OJ, Bazant MZ, Velev OD (2008) Induced-charge electrophoresis of metallo-dielectric particles. Phys Rev Lett 100(5) Art No. 058302

Gonzalez A, Ramos A, Green NG, Castellanos A, Morgan H (2000) Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E 61:4019

CrossRefGonzalez A, Ramos A, Garcia-Sanchez P (2008) A castellanos effect of the difference in ion mobilities on traveling wave electro-osmosis. IEEE Int Conf Dielectric Liquids 1–4. doi:

10.1109/ICDL.2008.4622452
Green NG, Ramos A, Gonzalez A, Morgan H, Castellanos A (2000) Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61:4011–4018

CrossRefGreen NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2002) Fluid flow induced by non-uniform AC electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E 66:026305

CrossRefGregersen MM, Okkels F, Bazant MZ, Bruus H (2009) Topology and shape optimization of induced-charge electro-osmotic micro-pumps. New J Phys 11:075016

CrossRefHarnett CK, Templeton J, Dunphy-Guzman K, Senousy YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8:565–572

CrossRefHoffman BD, Shaqfeh ESG (2009) The effect of Brownian motion on the stability of sedimenting suspensions of polarizable rods in an electric field. J Fluid Mech 624:361–388

MATHCrossRefHunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, New York

Hunter RJ (2001) Foundations of colloid science. Oxford University Press, Oxford

Khair AS, Squires TM (2008) Fundamental aspects of concentration polarization arising from non-uniform electrokinetic transport. Phys Fluids 20:087102

CrossRefKilic MS, Bazant MZ (2007) Induced-charge electrophoresis near an insulating Wall. arXiv:0712.0453

Laser DJ, Santiago JG (2004) A review of micro-pumps. J Micromech Microeng 14:R35–R64

CrossRefLevich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

Levitan JA, Devasenathipathy S, Studer V, Ben Y, Thorsen T, Squires TM, Bazant MZ (2005) Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Colloids Surf A 267:122–132

CrossRefLi D (2004) Electrokinetics in microfluidics. Academic Press, New York

Li D (2008) Encyclopedia of microfluidics and nanofluidics. Springer, New York

CrossRefLong D, Ajdari A (1998) Symmetry properties of the electrophoretic motion of patterned colloidal particles. Phys Rev Lett 8:1529–1532

CrossRefLyklema J (1995) Fundamentals of interface and colloid science. Volume II: solid-liquid interfaces. Academic Press, San Diego

Mansuripur T, Pascall AJ, Squires TM (2009) Asymmetric flows over symmetric surfaces: capacitive coupling in induced charge electro-osmosis. New J Phys 11:075030

CrossRefMishchuk NA, Takhistov PV (1995) Electroosmosis of the second kind. Colloids Surf A 95:119–131

CrossRefMurtsovkin VA (1996) Nonlinear flows near polarized disperse particles. Colloid J 58(3):341–349

Olesen LH (2006) AC electrokinetic micro-pumps, Ph.D. thesis, Danish Technical University.

http://www2.mic.dtu.dk/research/MIFTS/publications/PhD/PhDthesisLHO.pdf
Olesen LH, Bruus H, Ajdari A (2006) AC electrokinetic micropumps: the effect of geometrical confinement, faradaic current injection and nonlinear surface capacitance. Phys Rev E 73, Art. no. 056313

Olesen LH, Bazant MZ, Bruus H (2009) Strongly nonlinear dynamics of electrolytes in large ac voltages. Phys Fluid Dyn ArXiv: 0908.3501v1

Pascall AJ, Squires TM (2010) Induced charge electroosmosis over controllably-contaminated electrodes. Phys Rev Lett 104(8) (Art. no. 088301)

Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci 217:420–422

CrossRefRose KA, Meier JA, Dougherty GM, Santiago JG (2007) Rotational electrophoresis of striped metallic microrods. Phys Rev E 75:011503

CrossRefRubinstein I, Shtilman L (1979) Voltage against current curves of cation exchange membranes. J Chem Soc Faraday Trans II 75:231–246

CrossRefSaintillan D (2008) Nonlinear interactions in electrophoresis of ideally polarizable particles. Phys Fluids 20:067104

CrossRefSaintillan D, Darve E, Shaqfeh ESG (2006a) Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. J Fluid Mech 563:223–259

MathSciNetMATHCrossRefSaintillan D, Shaqfeh ESG, Darve E (2006b) Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis. Phys Fluids 18(12):121503

CrossRefSaville DA (1977) Electrokinetics effect with small particles. Annu Rev Fluid Mech 9:321–337

CrossRefSchoch RB, Han JY, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80(3):839–883

CrossRefSimonov IN, Dukhin SS (1973) Theory of electrophoresis of solid conducting particles in case of ideal polarization of a thin diffuse double-layer. Colloid J USSR 35(1):191–193

Soni G, Squires TM, Meinhart CD (2007) Nonlinear phenomena in induced-charge electroosmosis: a numerical and experimental investigation. In: Viovy JL, Tabeling P, Descroix S, Malaquin L (eds) Micro total analysis systems, vol 1, Chemical and Biological Microsystems Society, pp 291–293

Squires TM (2009) Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip 9(17):2477–2483

CrossRefSquires MT, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217–252

MathSciNetMATHCrossRefSquires TM, Bazant MZ (2006) Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J Fluid Mech 560:65–101

MathSciNetMATHCrossRefStone H, Stroock A, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381411

CrossRefStuder A, Pepin A, Chen Y, Ajdari A (2004) An integrated AC electrokinetic pump in a microfluidic loop for fast tunable flow control. Analyst 129:944–949

CrossRefSuh YK, Kang S (2008) Asymptotic analysis of ion transport in a nonlinear regime around polarized electrodes under AC. Phys Rev E 77:011502

CrossRefThamida S, Chang HC (2002) Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges. Phys Fluids 14:4315

CrossRefUrbanski JP, Levitan JA, Bazant MZ, Thorsen T (2006a) Fast AC electro-osmotic pumps with non-planar electrodes. Appl Phys Lett 89:143508

CrossRefUrbanski JP, Levitan JA, Burch DN, Thorsen T, Bazant MZ (2006b) The effect of step height on the performance of AC electro-osmotic microfluidic pumps. J Colloid Interface Sci 309:332–341

CrossRefWang SC, Chena HP, Lee CY, Yu CC, Chang SC (2006) AC electro-osmotic mixing induced by non-contact external electrodes. Biosens Bioelectron 22(4):563–567

CrossRefWu J (2006) Electrokinetic microfluidics for on-chip bio-particle processing. IEEE Trans Nanotechnol 5(2):84–89

CrossRefWu J (2008) Interactions of electrical fields with fluids: laboratory-on-a-chip applications. IET Nanobiotechnol 2(1):14–27

CrossRefWu Z, Li D (2008a) Micromixing using induced-charge electrokinetic flow. Electrochim Acta 53(19):5827–5835

CrossRefWu Z, Li D (2008b) Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluid Nanofluid 5:65–76

CrossRefWu Z, Li D (2009) Induced-charge electrophoretic motion of ideally polarizable particles. Electrochim Acta 54:3960–3967

CrossRefWu Z, Gao Y, Li D (2009) Electrophoretic motion of ideally polarizable particles in a microchannel. Electrophoresis 30:773–781

CrossRefYariv E (2005a) Electro-osmotic flow near a surface charge discontinuity. Phys Fluids 17:051702

CrossRefYariv E (2005a) Induced-charge electrophoresis of non-spherical particles. Phys Fluids 17, Art. no. 051702

Yariv E (2008) Slender-body approximations for electrophoresis and electro-rotation of polarizable particles. J Fluid Mech 613:85–94

MathSciNetMATHCrossRefYariv E (2009) Boundary-induced electrophoresis of uncharged conducting particles: remote-wall approximations. Proc R Soc A 465:709–723

MathSciNetMATHCrossRefYe C, Li D (2004) 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel. J Colloid Interface Sci 272:480–488

CrossRefYossifon G, Frankel I, Miloh T (2006) On electro-osmotic flows through microchannel junctions. Phys Fluids 18:117108

CrossRefYossifon G, Frankel I, Miloh T (2007) Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids. Phys Fluids 19:068105

CrossRefZaltzman B, Rubinstein BI (2007) Electro-osmotic slip and electro-convective instability. J Fluid Mech 579:173–226

MathSciNetMATHCrossRefZhao H, Bau H (2007a) A microfluidic chaotic stirrer utilizing induced-charge electro-osmosis. Phys Rev E 75:066217

CrossRefZhao H, Bau H (2007b) On the effect of induced electro-osmosis on a cylindrical particle next to a surface. Langmuir 23:4053–4063

CrossRef