, Volume 7, Issue 4, pp 531-543
Date: 20 Feb 2009

Capillary-driven pumping for passive degassing and fuel supply in direct methanol fuel cells

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this paper we present a new concept of creating and using capillary pressure gradients for passive degassing and passive methanol supply in direct methanol fuel cells (DMFCs). An anode flow field consisting of parallel tapered channels structures is applied to achieve the passive supply mechanism. The flow is propelled by the surface forces of deformed CO2 bubbles, generated as a reaction product during DMFC operation. This work focuses on studying the influence of channel geometry and surface properties on the capillary-induced liquid flow rates at various bubbly gas flow rates. Besides the aspect ratios and opening angles of the tapered channels, the static contact angle as well as the effect of contact angle hysteresis has been identified to significantly influence the liquid flow rates induced by capillary forces at the bubble menisci. Applying the novel concept, we show that the liquid flow rates are up to thirteen times higher than the methanol oxidation reaction on the anode requires. Experimental results are presented that demonstrate the continuous passive operation of a DMFC for more than 15 h.