, Volume 3, Issue 4, pp 473-484
Date: 04 Jan 2007

Slip flow in non-circular microchannels

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Microscale fluid dynamics has received intensive interest due to the emergence of Micro-Electro-Mechanical Systems (MEMS) technology. When the mean free path of the gas is comparable to the channel’s characteristic dimension, the continuum assumption is no longer valid and a velocity slip may occur at the duct walls. Non-circular cross sections are common channel shapes that can be produced by microfabrication. The non-circular microchannels have extensive practical applications in MEMS. Slip flow in non-circular microchannels has been examined and a simple model is proposed to predict the friction factor and Reynolds product fRe for slip flow in most non-circular microchannels. Through the selection of a characteristic length scale, the square root of cross-sectional area, the effect of duct shape has been minimized. The developed model has an accuracy of 10% for most common duct shapes. The developed model may be used to predict mass flow rate and pressure distribution of slip flow in non-circular microchannels.