Skip to main content
Log in

Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

An integrated thermofluidic analysis of DNA hybridization, in the presence of combined electrokinetically and/or pressure-driven microchannel flows, is presented in this work. A comprehensive model is developed that combines bulk and surface transport of momentum, heat and solute with the pertinent hybridization kinetics, in a detailed manner. Results confirm that electrokinetic accumulation of DNA occurs within a few seconds or minutes, as compared to passive hybridization that could sometimes take several hours. Further, it is observed that by increasing the accumulation time, significantly higher concentration of DNA can be achieved at the capture probes. However, this eventually tends to attain a saturation state, due to a lesser probability of successful hybridization on account of a prior accumulation of target DNA molecules on the capture probe strands. While favorable pressure gradients augment DNA hybridization rates that are otherwise established by the electro-osmotic transport, adverse pressure gradients of comparable magnitude may turn out to be much less consequential in retarding the same. Such effects can be of potential significance in the designing of a microfluidic arrangement to achieve the fastest rate of DNA hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axelrod D, Wang MD (1994) Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophys J 66:588–600

    PubMed  Google Scholar 

  • Bousse L, Cohen C, Nikiforov T, Chow A, Kopfsill AR, Dubrow R, Parce JW (2000) Electrokinetically controlled microfluidic analysis systems. Annu Rev Biophys Biomo Struct 29:155–181

    Article  Google Scholar 

  • Chan V, Graves DJ, McKenzie SE (1995) The biophysics of DNA hybridization with immobilized oligonucleotide probes. Biophys J 69:2243–2255

    PubMed  Google Scholar 

  • Chan V, Graves D, Fortina P, McKenzie SE (1997) Adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces. Langmuir 13:320–329

    Article  Google Scholar 

  • Chan V, McKenzie SE, Surrey S, Fortina P, Graves DJ (1998) Effect of hydrophobicity and electrostatics on adsorption and surface diffusion of DNA oligonucleotides at liquid/solid interfaces. J Colloid Int Sci 203:197–207

    Article  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Article  PubMed  Google Scholar 

  • Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, Heller M, O’Connell J (1998) Preparation and hybridization analysis of DNA/RNA from E-coli on microfabricated bioelectronic chips. Nat Biotechnol 16:541–546

    Article  PubMed  Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimension straight channels: finite debye layer effects. Anal Chem 73:1979–1986

    Article  PubMed  Google Scholar 

  • Edman FE, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ (1997) Electric field directed nucleic acid hybridization on microchips. Nucleic Acid Res 25:4907–4914

    Article  PubMed  Google Scholar 

  • Edman CF, Swint RB, Gurtner C, Formosa RE, Roh SD, Lee KE, Swanson PD, Ackley DE, Coleman JJ, Heller MJ (2000) IEEE 12:1198–1200

    Google Scholar 

  • Erickson D, Li D, Krull UJ (2003) Dynamic modeling of DNA hybridization kinetics for spatially resolved biochips. Anal Biochem 317:186–200

    Article  PubMed  Google Scholar 

  • Eugene T, Forster AH, Heller MJ (2000) Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. Electrophoresis 21:157–164

    Article  PubMed  Google Scholar 

  • Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser, DF, Manz A (1993) Micromaching a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261:895–897

    Article  Google Scholar 

  • Heller MJ (1996) An active microelectronics device for multiplex DNA analysis. IEEE Eng Med Biol 15:100–104

    Article  Google Scholar 

  • Kassegne SK, Resse H, Hodko D,Yang JM, Sarkar K, Smolko D, Swanson P, Raymond DE, Heller MJ, Madou MJ (2003) Numerical modeling of transport and accumulation of DNA on electronically active biochips. Sensors Actuators B 94:81–98

    Article  Google Scholar 

  • Livshits MA, Mirzabekov AD (1996) Theoretical analysis of the kinetics of DNA hybridization with gel-immobilized oligos. Biophys J 71:2795–2801

    Article  PubMed  Google Scholar 

  • Mala GM, Li DQ, Dale JD (1997) Heat transfer and fluid flow in microchannels. Int J Heat Mass Transfer 40:3079–3088

    Article  MATH  Google Scholar 

  • McKnight TE, Culbertson CT, Jacobson SC, Ramsey JM (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045–4049

    Article  PubMed  Google Scholar 

  • Melcher JR (1981) Continuum electromechanics. MIT Press, Cambridge

    Google Scholar 

  • Ozkan M (2001) PhD Dissertation, Department of Electrical Engineering, University of California, San Diego, CA

  • Paces M, Lindner J, Havlica J, Kosek J, Snita D, Marek M (2000) Mathematical modeling of complex chemical microsystems in electric field. Proceedings of the fourth international conference on microreaction technology (IMRET 4) Atlanta

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York

    MATH  Google Scholar 

  • Qu W, Li D (2000) A model for overlapped EDL fields. J Colloid Interface Sci 224:397–407

    Article  PubMed  Google Scholar 

  • Radtkey R, Feng L, Muralhider M, Duhon M, Canter D, DiPierro D, Fallon S, Tu E, McElfresh K, Nerenberg M, Sosnowski R (2000) Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucleic Acids Res 28:17

    Article  Google Scholar 

  • Reif F (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, New York

    Google Scholar 

  • Sadana A, Ramakrishnan A (2001) A fractal analysis approach for the evaluation of hybridization kinetics in biosensors. J Colloid Interface Sci 234:9–18

    Article  PubMed  Google Scholar 

  • SantaLucia J Jr, Allawi HT, Seneviratne PA (1996) Improved nearest-neighbor parameters for predicting dna duplex stability. Biochemistry 35:3555–3562

    Article  PubMed  Google Scholar 

  • Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci USA 94:1119–1123

    Article  PubMed  Google Scholar 

  • Tang GY, Yang C, Chai JC, Gong HQ (2004) Joule heating effect on electroosmotic flow and mass species transport in a microcapillary. Int J Heat Mass Transfer 47:215–227

    Article  MATH  Google Scholar 

  • Vainrub A, Pettitt BM (2000) Thermodynamics of association to molecule immobilized in an electric double layer. Chem Phys Lett 323:160–166

    Article  Google Scholar 

  • Wetmur JG, Davidson N (1968) Kinetics of renaturation of DNA. J Mol Biol 31:349–370

    Article  PubMed  Google Scholar 

  • Yang C, Li DJ (1997) Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels. J Colloid Interface Sci 194:95–107

    Article  PubMed  Google Scholar 

  • Yang RJ, Fu LM, Hwang CC (2001) Electroosmotic entry flow in a microchannel. J Colloid Interface Sci 244:173–179

    Article  Google Scholar 

  • Yarmush ML, Patankar DB, Yarmush DM (1996) An analysis of transport resistances in the operation of BIACORE: implications for kinetic studies of biospecific interactions. Mol Immunol 33:1203–1214

    Article  PubMed  Google Scholar 

  • Zeng J, Almadidy A, Watterson J, Krull UJ (2002) Interfacial hybridization kinetics of oligonucleotides immobilized onto fused silica surfaces. Sensors Actuators B 90:68–75

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Appendices

Appendix

Relationship between c 2,s and c 3,m

Corresponding to a particular position on the microchannel wall, Eq. 18 can be written in the form:

$$ \frac{{dc_{{2},{s}}}}{{{d}t}} = P -Qc_{{2},{s}} $$
(32)

where P=AB + DE, Q= A +C +D +F. The coefficients A, B, C, D, E and F are as:

$$A = k_{3}^{1} c_{3,m}, B=E=c_{\rm 2,s,max}, C=k_{3}^{-1}, D=k_{2}^{1} c_{\rm 2,ns}, F=k_{2}^{-1}.$$

Integrating Eq. 32, one obtains

$$ \int\limits_{0}^{c_{_{{2},{s}}}}{\frac{{dc_{{2},{s}}}}{{P - Qc_{{2},{s}}}}} = \int\limits_{0}^t {{d}t} $$
(33)

On integration, it follows that

$$c_{{2},{s}} = \frac{P}{Q}{(1} - e^{- Qt})$$
(34)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Das, T. & Chakraborty, S. Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients. Microfluid Nanofluid 2, 37–49 (2006). https://doi.org/10.1007/s10404-005-0052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-005-0052-9

Keywords

Navigation