, Volume 1, Issue 4, pp 346-355
Date: 16 Jun 2005

A microfluidic chip for heterogeneous immunoassay using electrokinetical control

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This article presents the development of a novel, automated, electrokinetically controlled heterogeneous immunoassay on a poly(dimethylsiloxane) (PDMS) microfluidic chip. A numerical method has been developed to simulate the electrokinetically driven, time-dependent delivery processes of reagents and washing solutions within the complex microchannel network. Based on the parameters determined from the numerical simulations, fully automated on-chip experiments to detect Helicobacter pylori were accomplished by sequentially changing the applied electric fields. Shortened assay time and much less reagent consumptions are achieved by using this microchannel chip while the detection limit is comparable to the conventional assay. There is a good agreement between the experimental result and numerical prediction, demonstrating the effectiveness of using CFD to assist the experimental studies of microfluidic immunoassay.