Skip to main content

Advertisement

Log in

Introduction of Ranavirus to Isolated Wood Frog Populations Could Cause Local Extinction

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

Amphibian declines and extinction have been attributed to many causes, including disease such as chytridiomycosis. Other pathogens may also contribute to declines, with ranavirus as the most likely candidate given reoccurring die-offs observed in the wild. We were interested in whether it is possible for ranavirus to cause extinction of a local, closed population of amphibians. We used susceptibility data from experimental challenges on different life stages combined with estimates of demographic parameters from a natural population to predict the likelihood of extinction using a stage-structured population model for wood frogs (Lithobates sylvaticus). Extinction was most likely when the larval or metamorph stage was exposed under frequent intervals in smaller populations. Extinction never occurred when only the egg stage was exposed to ranavirus. Under the worst-case scenario, extinction could occur in as quickly as 5 years with exposure every year and 25–44 years with exposure every 2 years. In natural wood frog populations, die-offs typically occur in the larval stage and can reoccur in subsequent years, indicating that our simulations represent possible scenarios. Additionally, wood frog populations are particularly sensitive to changes in survival during the pre-metamorphic stages when ranavirus tends to be most pathogenic. Our results suggest that ranavirus could contribute to amphibian species declines, especially for species that are very susceptible to ranavirus with closed populations. We recommend that ranavirus be considered in risk analyses for amphibian species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Asuoad N, Anguelov R, Berven KA & Shillor M (2012) Model and simulations of a wood frog population. Biomath 1:1209032

    Article  Google Scholar 

  • Altizer S, Harvell D & Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution 18:589-596

    Article  Google Scholar 

  • Anderson RM & May RM (1979) Population biology of infectious disease. Nature 280:361-461

    Article  CAS  PubMed  Google Scholar 

  • Balseiro A, Dalton KP, Del Cerro A, Márquez I, Parra F, Prieto JM & Casais R (2010) Outbreak of common midwife toad virus in alpine newts (Mesotriton alpestris cyreni) and common midwife toads (Alytes obstetricans) in Northern Spain: A comparative pathological study of an emerging ranavirus. Veterinary Journal 186:256-258

    Article  Google Scholar 

  • Bayley AE, Hill BJ & Feist SW (2013) Susceptibility of the European common frog Rana temporaria to a panel of ranavirus isolates from fish and amphibian hosts. Diseases of Aquatic Organisms 103:171-183

    Article  PubMed  Google Scholar 

  • Bellis ED (1961) Growth of the wood frog. Copeia 1961:74-77

    Article  Google Scholar 

  • Berrill M, Coulson DR, Mcgillivray L & Pauli BD (1998) Toxicity of endosulfan to aquatic stages of anuran amphibians. Environmental Toxicology and Chemistry 17:1738-1744

    Article  CAS  Google Scholar 

  • Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:1599-1608

    Article  Google Scholar 

  • Berven KA (1995) Population regulation in wood frog, Rana sylvatica, from three diverse geographic localities. Australian Journal of Ecology 20:385-392

    Article  Google Scholar 

  • Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: Evidence from a 21-year population study. Copeia 2009:328-338

    Article  Google Scholar 

  • Biek R, Funk WC, Maxwell BA & Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conservation Biology 16:728-734

    Article  Google Scholar 

  • Blaustein AR, Hokit DG, O’hara RB & Holt RA (1994) Pathogenic fungus contributes to amphibian losses in the Pacific northwest. Biological Conservation 67:251-254

    Article  Google Scholar 

  • Brenes R (2013) Mechanisms contributing to the emergence of ranavirus in ectothermic vertebrate communities. Ph.D. Dissertation, University of Tennessee

  • Brenes R, Gray MJ, Waltzek TB, Wilkes RP, Miller DL (2014a) Transmission of ranavirus between ectothermic vertebrate hosts. PLoS One 9:e92476

  • Brenes R, Miller DL, Waltzek TB, Wilkes RP, Tucker JL (2014b) Susceptibility of fish and turtles to three ranaviruses isolated from different ectothermic vertebrate classes. Journal of Aquatic Animal Health 26:118–126

  • Briggs CJ, Vredenburg VT, Knapp RA & Rachowicz LJ (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology 86:3149-3159

    Article  Google Scholar 

  • Brunner JL, Barnett KE, Gosier CJ, Mcnulty SA, Rubbo MJ & Kolozsvary MB (2011) Ranavirus infection in die-offs of vernal pool amphibians in New York, USA. Herpetological Review 42:76-79

    Google Scholar 

  • Brunner JL, Richards K & Collins JP (2005) Dose and host characteristics influence virulence of ranavirus infections. Oecologia 144:399-406

    Article  PubMed  Google Scholar 

  • Brunner JL, Schock DM & Collins JP (2007) Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Diseases of Aquatic Organisms 77:87-95

    Article  CAS  PubMed  Google Scholar 

  • Brunner JL, Schock DM, Davidson EW & Collins JP (2004) Intraspecific reservoirs: Complex life history and the persistence of a lethal ranavirus. Ecology 85:560-566

    Article  Google Scholar 

  • Bryan LK, Baldwin CA, Gray MJ & Miller DL (2009) Efficacy of select disinfectants at inactivating ranavirus. Diseases of Aquatic Organisms 84:89-94

    Article  CAS  PubMed  Google Scholar 

  • Caswell H (2000) Matrix Population Models: Construction, Analysis, and Interpretation, 2nd edn. Sunderland, MA: Sinauer Associates

    Google Scholar 

  • Collins JP & Crump ML (2009) Extinction in Our Times: Global Amphibian Decline. Oxford: Oxford University Press

    Google Scholar 

  • Collins JP & Storfer A (2003) Global amphibian declines: sorting the hypotheses. Diversity and Distributions 9:89-98

    Article  Google Scholar 

  • Cunningham AA & Daszak P (1998) Extinction of a species of land snail due to infection with a microsporidian parasite. Conservation Biology 12:1139-1141

    Article  Google Scholar 

  • Cunningham AA, Langton TE, Bennett PM, Drury SE, Gough RE & Kirkwood JK (1993) Unusual mortality associated with poxvirus-like particles in frogs (Rana temporaria). Veterinary Record 133:141-142

    Article  CAS  PubMed  Google Scholar 

  • Daszak P, Cunningham AA & Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity and Distributions 9:141-150

    Article  Google Scholar 

  • De Castro F & Bolker BM (2005) Mechanisms of disease-induced extinction. Ecology Letters 8:117-126

    Article  Google Scholar 

  • Gahl MK & Calhoun AJK (2010) The role of multiple stressors in ranavirus-caused amphibian mortalities in Acadia National Park wetlands. Canadian Journal of Zoology 88:108-121

    Article  Google Scholar 

  • Gantress J, Maniero GD, Cohen N & Robert J (2003) Development and characterization of a model system to study amphibian immune responses to iridoviruses. Virology 311:254-262

    Article  CAS  PubMed  Google Scholar 

  • Gold KK, Reed PD, Bemis DA, Miller DL, Gray MJ & Souza MJ (2013) Efficacy of common disinfectants and terbinafine in inactivating the growth of Batrachochytrium dendrobatidis in culture. Diseases of Aquatic Organisms 107:77-81

    Article  CAS  PubMed  Google Scholar 

  • Gosner KL (1960) A simple table for staging anuran embryos with notes on identification. Herpetologica 16:183-190

    Google Scholar 

  • Gray MJ & Miller DL (2013) The rise of ranavirus: an emerging pathogen threatens ectothermic vertebrates. Wildlife Professional, 7:51–55

    Google Scholar 

  • Gray MJ, Miller DL & Hoverman JT (2009) Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87:243-266

    Article  PubMed  Google Scholar 

  • Green DE, Converse KA & Schrader AK (2002) Epizootiology of sixty-four amphibian morbidity and motality events in the USA, 1996-2001. Annals of the New York Academy of Sciences 969:323-339

    Article  PubMed  Google Scholar 

  • Green DE, Gray MJ & Miller DL (2009) Disease monitoring and biosecurity. In: Amphibian Ecology and Conservation. A Handbook of Techniques, CK Dodd Jr (editor), Oxford, UK: Oxford University Press, pp. 481–505

    Google Scholar 

  • Greer AL, Berrill M & Wilson PJ (2005) Five amphibian mortality events associated with ranavirus in south central Ontario, Canada. Diseases of Aquatic Organisms 67:9-14

    Article  PubMed  Google Scholar 

  • Greer AL, Briggs CJ & Collins JP (2008) Testing a key assumption of host-pathogen theory: density and disease transmission. Oikos 117:1667-1673

    Article  Google Scholar 

  • Guerry AD & Hunter ML, Jr. (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conservation Biology 16:745-754

    Article  Google Scholar 

  • Haislip NA, Gray MJ, Hoverman JT & Miller DL (2011) Development and disease: how susceptibility to an emerging pathogen changes through anuran development. PLoS One 6:e22307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han Y, Yu H, Yang X, Rees HH, Liu J & Lai R (2008) A serine proteinase inhibitor from frog eggs with bacteriostatic activity. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 149:58-62

    Article  Google Scholar 

  • Harp EM & Petranka JW (2006) Ranavirus in wood frogs (Rana sylvatica): Potential sources of transmission within and between ponds. Journal of Wildlife Diseases 42:307-318

    Article  PubMed  Google Scholar 

  • Harper EB, Rittenhouse TAG & Semlitsch RD (2008) Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conservation Biology 22:1205-1215

    Article  PubMed  Google Scholar 

  • Heard MJ, Smith KF, Ripp KJ, Berger M, Chen J, Dittmeier J, Goter M, Mcgarvey ST & Ryan E (2013) The threat of disease increases as species move toward extinction. Conservation Biology 27:1378-1388

    Article  PubMed  Google Scholar 

  • Hoverman JT, Gray MJ, Haislip NA & Miller DL (2011) Phylogeny, life history, and ecology contribute to differences in amphibian susceptibility to ranaviruses. EcoHealth 8:301-319

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B & Yang Z (1997) Statistical tests of host-parasite conspeciation. Evolution 51:410-419

    Article  Google Scholar 

  • IUCN (2013) The IUCN Red List of Threatened Species, Version 2013.1.

    Google Scholar 

  • Jancovich JK, Davidson EW, Seiler A, Jacobs BL & Collins JP (2001) Tranmission of the Ambystoma tigrinum virus to alternative hosts. Diseases of Aquatic Organisms 46:159-163

    Article  CAS  PubMed  Google Scholar 

  • Johnson PTJ, Lunde KB, Ritchie EG & Launer AE (1999) The effect of trematode infection on amphibian limb development and survivorship. Science 284:802-804

    Article  CAS  PubMed  Google Scholar 

  • Julian SE & King TL (2003) Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica. Molecular Ecology Notes 3:256-258

    Article  CAS  Google Scholar 

  • Kiesecker JM, Blaustein AR & Belden LK (2001) Complex causes of amphibian population declines. Nature 410:681-684

    Article  CAS  PubMed  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB & Lefkowitz EJ (2012) Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, London

    Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142:911-927

    Article  Google Scholar 

  • Lanoo M (2005) Amphibian declines: the conservation status of United States species. Berkeley, California: University of California Press

    Book  Google Scholar 

  • León-Vizcaíno L, Deybáñez MRR, Cubero MJ, Ortíz JM, Espinosa J, Pérez L, Simón MA & Alonso F (1999) Sarcoptic mange in Spanish ibex from Spain. Journal of Wildlife Diseases 35:647-659

    Article  PubMed  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessler AP & Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS 103:3165-3170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsh DM & Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conservation Biology 15:40-49

    Article  Google Scholar 

  • Mccallum H, Barlow N & Hone J (2001) How should pathogen transmission be modeled. Trends in Ecology & Evolution 16:295-300

    Article  Google Scholar 

  • Miller DL, Gray MJ & Storfer A (2011) Ecopathology of ranaviruses infecting amphibians. Viruses 3:2351-2373

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller DL, Rajeev S, Gray MJ & Baldwin CA (2007) Frog virus 3 infection, cultured American bullfrogs. Emerging Infectious Diseases. 13:342-343

    Article  PubMed Central  PubMed  Google Scholar 

  • Muths E, Gallant AL, Grant EHC, Battaglin WA, Green DE, Staiger JS, Walls SC, Gunzburger MS, Kearney RF (2006). In: The Amphibian Research and Monitoring Initiative (ARMI): 5-Year Report, UDo Interior, UG Survey (editors), US Geological Survey Scientific Investigations Report 2006–5224, pp. 77

  • Nazir J, Spengler M & Marschang RE (2012) Environtmental persistence of amphibian and reptilian ranaviruses. Diseases of Aquatic Organisms 98:177-184

    Article  CAS  PubMed  Google Scholar 

  • Newman RA & Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Molecular Ecology 10:1087-1100

    Article  CAS  PubMed  Google Scholar 

  • Pauli BD, Coulson DR & Berrill M (1999) Senstivity of amphibian embryos to MIMIC 240LV insecticide following single or double exposures. Environmental Toxicology and Chemistry 18:2538-2544

    Article  CAS  Google Scholar 

  • Pearman PB & Garner TWJ (2005) Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecology Letters 8:401-408

    Article  Google Scholar 

  • Peterman WE, Rittenhouse TAG, Earl JE & Semlitsch RD (2013) Demographic network and multi-season occupancy modeling of Rana sylvatica reveals spatial and temporal patterns of population connectivity and persistence. Landscape Ecology 28:1601-1613

    Article  Google Scholar 

  • Petranka JW, Harp EM, Holbrook CT & Hamel JA (2007) Long-term persistence of amphibian populations in a restored wetland complex. Biological Conservation 138:371-380

    Article  Google Scholar 

  • Petranka JW, Murray SS & Kennedy CA (2003) Responses of amphibians to restoration of a southern Appalachian wetland: perturbations confound post-restoration assessment. Wetlands 23:278-290

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Raithel CJ, Paton PWC, Pooler PS & Golet FC (2011) Assessing long-term population trends of wood frogs using egg-mass counts. Journal of Herpetology 45:23-27

    Article  Google Scholar 

  • Redmer M & Trauth SE (2005) Rana sylvatica LeConte, 1825, Wood Frog. In: Amphibian Declines: The Conservation Status of United States Species, M Lanoo (editor), Los Angeles: University of California Press, pp. 590-593

    Google Scholar 

  • Ridenhour BJ & Storfer A (2008) A geographically variable selection in Ambystoma tigrinum virus (Iridoviridae) throughout western United States. Journal of Evolutionary Biology 21:1151-1159

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Morales H, Buck W, Cohen N, Marr S & Gantress J (2005) Adaptive immunity and histopathology in frog virus 3-infected Xenopus. Virology 332:667-675

    Article  CAS  PubMed  Google Scholar 

  • Rojas S, Richards K, Jancovich JK, Davidson EW (2005) Influence of temperature on Ranavirus infection in larval salamanders Ambystoma tigrinum. Diseases of Aquatic Organisms 63:95–100

  • Ryder JJ, Miller MR, White A, Knell RJ & Boots M (2007) Host-parasite population dynamics under combined frequency- and density-dependent transmission. Oikos 116:2017-2026

    Article  Google Scholar 

  • Schock DM, Bollinger TK, Chinchar VG, Jancovich JK & Collins JP (2008) Experimental evidence that amphibian ranaviruses are multi-host pathogens. Copeia 2008:133-143

    Article  Google Scholar 

  • Skerratt LF, Berger U, Speare R, Cashins S, Mcdonald KR, Phillott AD, Hines HB & Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125-134

    Article  Google Scholar 

  • Smith KF, Sax DF & Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology 20:1349-1357

    Article  PubMed  Google Scholar 

  • Storfer A, Alfaro ME, Ridenhour BJ, Jancovich JK, Mech SG, Parris MJ & Collins JP (2007) Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecology Letters 10:1075-1083

    Article  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL & Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-1786

    Article  CAS  PubMed  Google Scholar 

  • Teacher AGF, Cunningham AA & Garner TWJ (2010) Assessing the long-term impact of Ranavirus infection in wild common frog populations. Animal Conservation 13:514-522

    Article  Google Scholar 

  • Teacher AGF, Garner TWJ & Nichols RA (2009) Evidence for directional selection at a novel major histocompatability class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus). PLoS One 4:e4616

    Article  PubMed Central  PubMed  Google Scholar 

  • Todd-Thompson M (2010) Seasonality, Variation in Species Prevalence, and Localized Disease for Ranavirus in Cades Cove (Great Smoky Mountains National Park) Amphibians. M.S., University of Tennessee

    Google Scholar 

  • Vonesh JR & De La Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325-333

    Article  Google Scholar 

  • Vredenburg VT, Knapp RA, Tunstall TS & Briggs CJ (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107:9684-9694

    Article  Google Scholar 

  • Vrijenhoek RC (1994) Genetic diversity and fitness in small populations. In: Conservation Genetics, V Loeschcke, SK Jain & J Tomiuk (editors), Basel, Switzerland: Birkhäuser, pp. 37-53

    Chapter  Google Scholar 

  • Wake DB & Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. PNAS 105:11466-11473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted while a Postdoctoral Fellow (JEE) at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF Award #EF-0832858, with additional support from The University of Tennessee-Knoxville and the University of Tennessee Institute of Agriculture. We thank N. Haislip and J. Hoverman for performing the laboratory experiments and sharing these data for our simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia E. Earl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Earl, J.E., Gray, M.J. Introduction of Ranavirus to Isolated Wood Frog Populations Could Cause Local Extinction. EcoHealth 11, 581–592 (2014). https://doi.org/10.1007/s10393-014-0950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-014-0950-y

Keywords

Navigation