EcoHealth

, Volume 10, Issue 3, pp 298–313

Deciphering Serology to Understand the Ecology of Infectious Diseases in Wildlife

  • Amy T. Gilbert
  • A. R. Fooks
  • D. T. S. Hayman
  • D. L. Horton
  • T. Müller
  • R. Plowright
  • A. J. Peel
  • R. Bowen
  • J. L. N. Wood
  • J. Mills
  • A. A. Cunningham
  • C. E. Rupprecht
Review

DOI: 10.1007/s10393-013-0856-0

Cite this article as:
Gilbert, A.T., Fooks, A.R., Hayman, D.T.S. et al. EcoHealth (2013) 10: 298. doi:10.1007/s10393-013-0856-0

Abstract

The ecology of infectious disease in wildlife has become a pivotal theme in animal and public health. Studies of infectious disease ecology rely on robust surveillance of pathogens in reservoir hosts, often based on serology, which is the detection of specific antibodies in the blood and is used to infer infection history. However, serological data can be inaccurate for inference to infection history for a variety of reasons. Two major aspects in any serological test can substantially impact results and interpretation of antibody prevalence data: cross-reactivity and cut-off thresholds used to discriminate positive and negative reactions. Given the ubiquitous use of serology as a tool for surveillance and epidemiological modeling of wildlife diseases, it is imperative to consider the strengths and limitations of serological test methodologies and interpretation of results, particularly when using data that may affect management and policy for the prevention and control of infectious diseases in wildlife. Greater consideration of population age structure and cohort representation, serological test suitability and standardized sample collection protocols can ensure that reliable data are obtained for downstream modeling applications to characterize, and evaluate interventions for, wildlife disease systems.

Keywords

antibody prevalence epidemiological models immunity surveillance wildlife disease 

Copyright information

© International Association for Ecology and Health (outside the USA) 2013

Authors and Affiliations

  • Amy T. Gilbert
    • 1
    • 11
  • A. R. Fooks
    • 2
    • 3
  • D. T. S. Hayman
    • 2
    • 4
    • 5
    • 6
  • D. L. Horton
    • 2
  • T. Müller
    • 7
  • R. Plowright
    • 8
  • A. J. Peel
    • 4
    • 5
  • R. Bowen
    • 9
  • J. L. N. Wood
    • 4
  • J. Mills
    • 10
  • A. A. Cunningham
    • 5
  • C. E. Rupprecht
    • 1
    • 12
  1. 1.National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and PreventionAtlantaUSA
  2. 2.Wildlife Zoonoses and Vector-Borne Disease GroupAnimal Health and Veterinary Laboratories AgencySurreyUK
  3. 3.The National Consortium for Zoonosis ResearchUniversity of LiverpoolNestonUK
  4. 4.Disease Dynamics Unit, Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  5. 5.Institute of ZoologyZoological Society of LondonLondonUK
  6. 6.Department of BiologyColorado State UniversityCOUSA
  7. 7.Friedrich-Loeffler-InstitutFederal Research Institute for Animal HealthWusterhausenGermany
  8. 8.Center for Infectious Disease DynamicsThe Pennsylvania State UniversityUniversity ParkUSA
  9. 9.Department of Biomedical SciencesColorado State UniversityCOUSA
  10. 10.Population Biology, Ecology, and Evolution ProgramEmory UniversityAtlantaUSA
  11. 11.United States Department of AgricultureNational Wildlife Research CenterFort CollinsUSA
  12. 12.Global Alliance for Rabies ControlManhattanUSA