Skip to main content
Log in

Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2013

Abstract

Purpose

To study accommodative changes in the human lens using swept-source optical coherence tomography (Kitasato anterior segment OCT/KAs-OCT), which can image the whole anterior segment of the eye.

Methods

Thirty-five healthy subjects (mean age 41 years, range 13–79 years) were recruited. Using KAs-OCT, we measured the curvature of the anterior (ASC) and posterior surfaces (PSC), the thickness (LT) of the lens and the anterior chamber depth (ACD) in response to far (0.4 D) and near (10 D) accommodative stimuli.

Results

In response to accommodative stimuli (0.4/10 D), the mean values ± standard deviations were: radius of ASC, 9.72 ± 2.53/7.84 ± 1.85 mm (Wilcoxon ranked-sign test, p < 0.0001); radius of PSC, 5.06 ± 0.71/4.70 ± 0.76 mm (p = 0.0012); LT, 3.86 ± 0.77/4.00 ± 0.76 mm (p < 0.0001); ACD, 2.72 ± 0.61/2.61 ± 0.54 mm (p = 0.0002). The rate of accommodation-associated changes in ASC, LT, and ACD showed significant correlation with aging (Pearson correlation coefficient: r = −0.725, p < 0.0001; r = −0.626, p = 0.0001; r = −0.720, p < 0.0001, respectively), but there was no such correlation in PSC (r = −0.064, p = 0.401).

Conclusion

The radius of ASC and PSC decreased with accommodation, and the rates of changes in ASC were larger than those in PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Helmholtz H. Ueber die Accommodation des Auges. Albrecht von Graefes Arch Ophthalmol. 1855;2:1–74 (in German).

  2. Schachar RA. Is Helmholtz’s theory of accommodation correct? Ann Ophthalmol. 1999;31:10–7.

    Google Scholar 

  3. Glasser A, Kaufman PL. The mechanism of accommodation in primates. Ophthalmology. 1999;106:863–72.

    Article  PubMed  CAS  Google Scholar 

  4. Koretz JF, Cook CA, Kaufman PL. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Invest Ophthalmol Vis Sci. 1997;38:569–78.

    PubMed  CAS  Google Scholar 

  5. Atchison DA. Accommodation and presbyopia. Ophthalmic Physiol Opt. 1995;15:255–72.

    Article  PubMed  CAS  Google Scholar 

  6. Charman WN. The eye in focus: accommodation and presbyopia. Clin Exp Optom. 2008;91:207–25.

    Article  PubMed  Google Scholar 

  7. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kaluzny BJ, Kałuzny JJ, Szkulmowska A, Gorczyńska I, Szkulmowski M, Bajraszewski T, et al. Spectral optical coherence tomography: a novel technique for cornea imaging. Cornea. 2006;25:960–5.

    Article  PubMed  Google Scholar 

  9. Baumann B, Pircher M, Götzinger E, Hitzenberger CK. Full range complex spectral domain optical coherence tomography without additional phase shifters. Opt Express. 2007;15:13375–87.

    Article  PubMed  Google Scholar 

  10. Sarunic MV, Asrani S, Izatt JA. Imaging the ocular anterior segment with real-time, full-range Fourier domain optical coherence tomography. Arch Ophthalmol. 2008;126:537–42.

    Article  PubMed  Google Scholar 

  11. Grulkowski I, Gora M, Szkulmowski M, Gorczynska I, Szlag D, Marcos S, et al. Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt Express. 2009;17:4842–58.

    Article  PubMed  CAS  Google Scholar 

  12. Yasuno Y, Madjarova VD, Makita S, Akiba M, Morosawa A, Chong C, et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt Express. 2005;13:10652–64.

    Article  PubMed  Google Scholar 

  13. Kerbage C, Lim H, Sun W, Mujat M, de Boer JF. Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging. Opt Express. 2007;15:7117–25.

    Article  PubMed  CAS  Google Scholar 

  14. Götzinger E, Pircher M, Leitgeb R, Hitzenberger C. High speed full range complex spectral domain optical coherence tomography. Opt Express. 2005;13:583–94.

    Article  PubMed  Google Scholar 

  15. Zeng Y, Liu Y, Liu X, Chen C, Xia Y, Lu M, et al. Comparison of lens thickness measurements using the anterior segment optical coherence tomography and A-scan ultrasonography. Invest Ophthalmol Vis Sci. 2009;50:290–4.

    Article  PubMed  Google Scholar 

  16. Furukawa H, Hiro-Oka H, Satoh N, Yoshimura R, Choi D, Nakanishi M, et al. Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging. Biomed Opt Express. 2010;1:1491–501.

    Article  PubMed  Google Scholar 

  17. Kuznetsov M, Atia W, Jonson B, Flanders D. Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications. Proc SPIE. 2010;7554:75541F1–75541F6. doi:10.1117/12.842567.

  18. American National Standards Institute, Safe Use of Lasers (ANSI), 1993.

  19. Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci. 1999;40:1162–9.

    PubMed  CAS  Google Scholar 

  20. Richdale K, Bullimore MA, Zadnik K. Lens thickness with age and accommodation by optical coherence tomography. Ophthalmic Physiol Opt. 2008;28:441–7.

    Article  PubMed  Google Scholar 

  21. Rosales P, Dubbelman M, Marcos S, van der Heijde R. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J Vis. 2006;6:1057–67.

    Article  PubMed  Google Scholar 

  22. Duane A. Studies in monocular and binocular accommodation with their clinical applications. Am J Ophthalmol. 1922;5:867–77.

    Google Scholar 

  23. Croft MA, Glasser A, Heatley G, McDonald J, Ebbert T, Dahl DB, et al. Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci. 2006;47:1076–86.

    Article  PubMed  Google Scholar 

  24. Schultz KE, Sinnott LT, Mutti DO, Bailey MD. Accommodative fluctuations, lens tension, and ciliary body thickness in children. Optom Vis Sci. 2009;86:677–84.

    Article  PubMed  Google Scholar 

  25. Strenk SA, Strenk LM, Guo S. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle. J Cataract Refract Surg. 2010;36:235–41.

    Article  PubMed  Google Scholar 

  26. Lehman BM, Berntsen DA, Bailey MD, Zadnik K. Validation of optical coherence tomography-based crystalline lens thickness measurements in children. Optom Vis Sci. 2009;86:181–7.

    Article  PubMed  Google Scholar 

  27. Zhou C, Wang J, Jiao S. Dual channel dual focus optical coherence tomography for imaging accommodation of the eye. Opt Express. 2009;17:8947–55.

    Article  PubMed  CAS  Google Scholar 

  28. Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J Vis. 2011;11. pii: 19.

    Google Scholar 

  29. Baikoff G, Lutun E, Wei J, Ferraz C. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. J Cataract Refract Surg. 2004;30:696–701.

    Article  PubMed  Google Scholar 

  30. Baikoff G, Lutun E, Ferraz C, Wei J. Static and dynamic analysis of the anterior segment with optical coherence tomography. J Cataract Refract Surg. 2004;30:1843–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Japan Society for the Promotion of Science (JSPS) through a Grant-in-Aid for Scientific Research (Number 23500529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Satoh.

About this article

Cite this article

Satoh, N., Shimizu, K., Goto, A. et al. Accommodative changes in human eye observed by Kitasato anterior segment optical coherence tomography. Jpn J Ophthalmol 57, 113–119 (2013). https://doi.org/10.1007/s10384-012-0208-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-012-0208-6

Keywords

Navigation