, Volume 59, Issue 4, pp 863-889
Date: 02 Nov 2012

Facies analysis and sequence stratigraphy of an Upper Jurassic carbonate ramp in the Eastern Alborz range and Binalud Mountains, NE Iran

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Upper Jurassic (Oxfordian-Kimmeridgian-Tithonian?) strata of NE Iran (Lar Formation) are composed of medium- to thick-bedded, mostly grainy limestones with various skeletal (bivalves, foraminifera, algae, corals, echinoderms, brachiopods, and radiolaria) and nonskeletal (peloids, ooids, intraclasts, and oncoids) components. Facies analysis documents low- to high-energy environments, including tidal-flat, lagoonal, barrier, and open-marine facies. Because of the wide lateral distribution of facies and the apparent absence of distinct paleobathymetric changes, the depositional system likely represents a westward-deepening homoclinal ramp. Four third-order depositional sequences can be distinguished in each of five stratigraphic measured sections. Transgressive system tracts (TST) show deepening-upward trends, in which shallow-water (tidal flat and lagoonal) facies are overlain by deeper-water (barrier and open-marine) facies. Highstand systems tracts (HST) show shallowing-upward trends in which deep-water facies are overlain by shallow-water facies. All sequence boundaries in the study area (except at the top of the stratigraphic column) are of the nonerosional (SB2) type. Correlation of depositional sequences in the studied sections show that relatively shallow marine (tidal-flat, lagoonal, barrier, and shallow open-marine) conditions dominated in the area. These alternated with deep-water open-marine wackestone and mudstones representing zones of maximum flooding (MFZ).