, Volume 59, Issue 4, pp 803-827

Late Cenomanian–Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany)

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Upper Cenomanian–Lower Turonian litho-stratigraphic units of the Danubian Cretaceous Group of the proximal Bodenwöhrer Senke (Regensburg, Eibrunn and Winzerberg formations, the latter consisting of a lower Reinhausen Member and an upper Knollensand Member), have been investigated with a focus on facies analysis and sequence stratigraphy. Analyses of litho-, bio-, and microfacies resulted in the recognition of 12 predominantly marine facies types for the Eibrunn and Winzerberg formations. Petrographic and paleontological properties as well as gradual transitions in the sections suggest that their depositional environment was a texturally graded, predominantly siliciclastic, storm-dominated shelf. The muddy–siliceous facies types FT 1–3 have been deposited below the storm wave-base in an outer shelf setting. Mid-shelf deposits are represented by fine- to medium-grained, bioturbated, partly glauconitic sandstones (FT 4–6). Coarse-grained, gravelly and/or shell-bearing sandstones (FT 7–10) developed in the inner shelf zone. Highly immature, arkosic coarse-grained sandstones and conglomerates (FT 11 and 12) characterize an incised, high-gradient braided river system. The Winzerberg Formation with its general coarsening- and thickening-upward trend reflects a regressive cycle culminating in a subaerial unconformity associated with a coarse-grained, gravelly unit of marine to fluvial origin known as the “Hornsand” which is demonstrably diachronous. The overlying Altenkreith Member of the Roding Formation signifies the onset of a new transgressive cycle in the early Middle Turonian. The sequence stratigraphic analysis suggests that the deposition of the Upper Cenomanian and Lower Turonian strata of the Bodenwöhrer Senke took place in a single cycle of third-order eustatic sea-level change between the major sequence boundaries SB Ce 5 (mid-Late Cenomanian) and SB Tu 1 (Early–Middle Turonian boundary interval). The southeastern part of the Bodenwöhrer Senke was flooded in the mid-Late Cenomanian (Praeactinocamax plenus transgression) and a second transgressive event occurred in the earliest Turonian. In the central and northwestern parts of the Bodenwöhrer Senke, however, the initial transgression occurred during the earliest Turonian, related to pre-transgression topography. Thus, the Regensburg and Eibrunn formations are increasingly condensed here and cannot be separated anymore. Following an earliest Turonian maximum flooding, the Lower Turonian Winzerberg Formation filled the available accommodation space, explaining its constant thickness of 35–40 m across the Bodenwöhrer Senke and excluding tectonic activity during this interval. Rapid sea-level fall at SB Tu 1 terminated this depositional sequence. This study shows that Late Cenomanian–Early Turonian deposition in the Bodenwöhrer Senke was governed by eustatic sea-level changes.