Skip to main content

Advertisement

Log in

Thick brachiopod shell concentrations from prodelta and siliciclastic ramp in a Tortonian Atlantic–Mediterranean strait (Miocene, Guadix Basin, southern Spain)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Carbonate production by brachiopods in shallow-water habitats is generally expected to be not sufficiently high and temporally persistent to allow them to form very thick and densely packed shell concentrations. The formation of thick brachiopod concentrations requires long-term persistence of populations with high density of individuals, and such circumstances are assumed to be rare especially during the Cenozoic. However, here we show that the large-sized brachiopod Terebratula terebratula, the most common species in benthic assemblages with epifaunal bivalves and irregular echinoids, formed several decameter- to meter-thick, densely packed concentrations in shallow siliciclastic, high-energy environments, in a seaway connecting the Atlantic Ocean with the Mediterranean Sea during the Latest Tortonian (Late Miocene, Guadix Basin, southern Spain). This brachiopod formed (1) meter-scale, thick, parautochthonous concentrations in a prodelta setting and (2) thin, mainly allochthonous, tide- and storm-reworked concentrations in megaripples and dunes. The abundance of brachiopods at the spatial scale of the Guadix Basin seems to be mainly related to intermediate levels of sedimentation rate and current velocity because abundance and thickness of shell concentrations decline both (1) in onshore direction towards delta foresets with high sedimentation rate generated by debris flows and (2) in offshore direction with increasing levels of tide- and storm-induced substrate instability. Although brachiopods in dune and megaripple deposits are more fragmented, disarticulated, and sorted, and have a higher pedicle/brachial valve ratio than in prodelta deposits, taphonomic damage is still relatively high in prodelta deposits. Terebratula terebratula thus formed thick concentrations in spite of that disintegration processes were relatively intense along the whole depositional gradient. Therefore, population dynamic of this species was probably characterized by production maxima that were comparable to some Cenozoic molluscs in terms of their productivity potential to form thick shell concentrations in shallow subtidal environments. We suggest that temporal changes in brachiopod carbonate production have a significant spatial and phylogenetic component because multiple large-sized species of the family Terebratulidae, which underwent radiation during the Cenozoic, attained high abundances and formed shell concentrations in temperate regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aberhan M, Kiessling W, Fürsich FT (2006) Testing the role of biological interactions for the evolution in mid-Mesozoic marine benthic ecosystems. Paleobiology 32:259–277

    Article  Google Scholar 

  • Aguirre ML, Farinati EA (1999) Taphonomic processes affecting late Quaternary molluscs along the coastal area of Buenos Aires Province (Argentina, Southwestern Atlantic). Palaeogeogr Palaeoclimatol Palaeoecol 149:283–304

    Article  Google Scholar 

  • Alexander RR (1990) Mechanical strength of shells of selected extant articulate brachiopods: implications for Paleozoic morphologic trends. Hist Biol 3:169–188

    Google Scholar 

  • Allan RS (1937) Tertiary Brachiopoda from the Forest Hill Limestone (Hutchinsonian) of Southland, New Zealand. Rec Canterb Mus 4:139–153

    Google Scholar 

  • Álvaro JJ, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennin E (2007) Fabric transitions from shell accumulations to reefs: an introduction with Palaeozoic examples. Geol Soc Lond Spec Publ 275:1–16

    Article  Google Scholar 

  • Asgaard U, Stentoft N (1984) Recent micromorph brachiopods from Barbados: palaeoecological and evolutionary implications. Geobios 17:29–37

    Article  Google Scholar 

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Res 60:160–172

    Google Scholar 

  • Bambach RK (1993) Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystems. Paleobiology 19:372–397

    Google Scholar 

  • Bertolaso L, Borghi E, García-Ramos D (2009) Brachiopodi Neogenici e Pleistocenici dell`Emilia (Parte Seconda). Parva Nat 8:3–42

    Google Scholar 

  • Betzler C, Braga JC, Martín JM, Sánchez-Almazo IM, Lindhorst S (2006) Closure of a seaway: stratigraphic record and facies (Guadix Basin, southern Spain). Int J Earth Sci 95:903–910

    Article  Google Scholar 

  • Bitner MA, Martinell J (2001) Pliocene brachiopods from the Estepona area (Málaga, South Spain). Rev Españ Paleont 16:177–211

    Google Scholar 

  • Bitner MA, Moisette P (2003) Pliocene brachiopods from north-western Africa. Geodiversitas 25:463–479

    Google Scholar 

  • Bitner MA, Pisera A (2000) Brachiopod fauna from the Middle Miocene deposits of Niechobrz, south-eastern Poland. Tertiary Res 20:7–15

    Google Scholar 

  • Bitner MA, Schneider S (2009) The Upper Burdigalian (Ottnangian) brachiopod fauna from the northern coast of the Upper Marine Molasse Sea in Bavaria, southern Germany. N Jb Geol Paläont Abh 254:117–133

    Article  Google Scholar 

  • Boullier A, Delance JH, Emig CC, D’Hondt JL, Gaspard D, Laurin B (1986) Les populations de Gryphus vitreus (Brachiopodes) en Corse. Implications paleontologiques. Biostratigr Paleozoique 4:179–196

    Google Scholar 

  • Brett CE, Baird GC (1986) Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1:207–227

    Article  Google Scholar 

  • Calzada S (1978) Braquiópodos tortonienses de Murcia. Est Geol 34:351–358

    Google Scholar 

  • Cantalamessa G, Di Celma C, Ragaini C (2005) Sequence stratigraphy of the Punta Ballena Member of the Jama Formation (Early Pleistocene, Ecuador): insights from integrated sedimentologic, taphonomic and paleoecologic analysis of molluscan shell concentrations. Palaeogeogr Palaeoclimatol Palaeoecol 26:160–172

    Google Scholar 

  • Carnevale G, Landini W, Ragaini L, Di Celma C, Cantalamessa G (2011) Taphonomic and palaeoecological analyses (mollusks and fishes) of the Sua Member condensed shellbed, Upper Onzole Formation (Early Pliocene, Ecuador). Palaios 26:160–172

    Article  Google Scholar 

  • Carroll M, Kowalewski M, Simões MG, Goodfriend GA (2003) Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381–402

    Article  Google Scholar 

  • Clapham ME, Bottjer DJ (2007) Permian marine paleoecology and its implications for large-scale decoupling of brachiopod and bivalve abundance and diversity during the Lopingian (Late Permian). Palaeogeogr Palaeoclimatol Palaeoecol 249:283–301

    Article  Google Scholar 

  • Courville P, Cronier C, Collin P-Y (2007) Environmental and chronological interests of the brachiopod bioaccumulations. Example of the Upper Oxfordian (Upper Jurassic) of the Paris Basin (France). C Rend Palevol 6:87–101

    Article  Google Scholar 

  • Curry G, Ansell AD, James M, Peck L (1989) Physiological constraints on living and fossil brachiopods. Trans Roy Soc Edinb Earth Sci 80:255–262

    Article  Google Scholar 

  • Davies DJ, Powell EN, Stanton RJ (1989) Relative rates of shell dissolution and net sediment accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207–212

    Article  Google Scholar 

  • Droser ML, Bottjer DJ (1993) Trends and patterns of Phanerozoic ichnofabrics. Ann Rev Earth Planet Sci 21:205–225

    Article  Google Scholar 

  • Emig CC (1987) Offshore brachiopods investigated by submersible. J Exper Mar Biol Ecol 108:261–273

    Article  Google Scholar 

  • Emig CC (1989) Distributional patterns along the Mediterranean continental margin (upper bathyal) using Gryphus vitreus (Brachiopoda) densities. Palaeogeogr Palaeoclimatol Palaeoecol 71:253–256

    Article  Google Scholar 

  • Emig CC (1990) Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences. Mar Biol 104:233–238

    Article  Google Scholar 

  • Fernández J, Soria JM, Viseras C (1996) Stratigraphic architecture of Neogene basins in the central sector of the Betic Cordillera (Spain): tectonic control and base level changes. In: Dabrio CJ, Friend PF (eds) Tertiary basins of Spain. The stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, pp 353–365

    Chapter  Google Scholar 

  • Finnegan S, McClain CM, Kosnik MA, Payne JL (2011) Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252–269

    Article  Google Scholar 

  • Försterra G, Häussermann V, Lüter C (2008) Mass occurrence of the Recent brachiopod Magellania venosa (Terebratellidae) in the fjords Comau and Reñihué, northern Patagonia, Chile. Mar Ecol 29:342–347

    Article  Google Scholar 

  • Fürsich FT (1995) Shell concentrations. Eclog Geol Helv 88:643–655

    Google Scholar 

  • Fürsich FT, Oschmann W (1993) Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India. J Geol Soc Lond 150:169–185

    Article  Google Scholar 

  • Futterer E (1982) Experiments on the distinction of wave and current influenced accumulations. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 175–179

    Chapter  Google Scholar 

  • Gaetani M (1986) Brachiopod paleocommunities from the Plio/Pleistocene of Calabria and Sicilia (Italy). In: Racheboeuf PR, Emig CC (eds) Les brachiopodes fossiles et actuels. Université de Bretagne Occidentale, Brest. Biostratigr. Paléozoïque, 4: 281–288

  • Gaetani M, Saccà D (1983) Brachiopodi Neogenici e Pleistocenici della provincia di Messina a della Calabria Meridionale. Geol Romana 22:1–43

    Google Scholar 

  • Gaetani M, Saccà D (1984) Brachiopodi batiali nel Pliocene e Pleistocene di Sicilia e Calabria. Riv Ital Paleont Stratigr 90:407–458

    Google Scholar 

  • García-Ramos D (2006) Nota sobre Terebratulinae del Terciario de Europa y su relación con los representantes neógenos del sureste español. Bol Asoc Cult Paleont Murciana 5:23–83

    Google Scholar 

  • Harper DAT, Pickerill RK (2008) Generation of brachiopod-dominated shell beds in the Miocene rocks of Carriacou, Lesser Antilles. Geol J 43:573–581

    Article  Google Scholar 

  • Harper EM, Wharton DS (2000) Boring predation and Mesozoic articulate brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 158:15–24

    Article  Google Scholar 

  • Harper EM, Palmer TJ, Alphey JR (1997) Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry. Geol Mag 134:403–407

    Article  Google Scholar 

  • Hautmann M, Benton MJ, Tomasovych A (2008) Catastrophic ocean acidification at the Triassic-Jurassic boundary. N Jb Geol Paläo Abh 249:119–127

    Article  Google Scholar 

  • Hendy SJW, Kamp PJJ (2004) Late Miocene to early Pliocene biofacies of Wanganui and Taranaki basins, New Zealand: Applications to paleoenvironmental and sequence stratigraphic analysis. N Z J Geol Geoph 47:769–785

    Article  Google Scholar 

  • Holland SM (1988) Taphonomic effects of sea-floor exposure on an Ordovician brachiopod. Palaios 3:588–597

    Article  Google Scholar 

  • Kidwell SM (1986) Models for fossil concentrations: paleobiologic implications. Paleobiology 12:6–24

    Google Scholar 

  • Kidwell SM (1989) Stratigraphic condensation of marine transgressive records: origin of major shell deposits in the Miocene of Maryland. J Geol 97:1–24

    Article  Google Scholar 

  • Kidwell SM (1991) The stratigraphy of shell concentrations. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record. Topics in Geobiology 9. Plenum Press, New York, pp 115–129

    Google Scholar 

  • Kidwell SM, Bosence DW (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the data locked in the fossil record. Topics in Geobiology 9. Plenum Press, New York, pp 115–209

    Google Scholar 

  • Kidwell SM, Brenchley PJ (1994) Patterns in bioclastic accumulation through the Phanerozoic: changes in input or destruction? Geology 22:1139–1143

    Article  Google Scholar 

  • Kidwell SM, Brenchley PJ (1996) Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, pp 290–336

    Google Scholar 

  • Kiessling W, Aberhan M, Villier L (2008) Phanerozoic trends in skeletal mineralogy driven by mass extinctions. Nat Geosci 8:527–530

    Article  Google Scholar 

  • Kondo Y, Abbott ST, Kitamura A, Kamp PJJ, Naish TR, Kamataki T, Saul GS (1998) The relationship between shellbed type and sequence architecture: examples from Japan and New Zealand. Sediment Geol 122:109–127

    Article  Google Scholar 

  • Kowalewski M, Hoffmeister AP, Baumiller TK, Bambach RK (2005) Secondary evolutionary escalation between brachiopods and enemies of other prey. Science 308:1774–1777

    Article  Google Scholar 

  • Krause RA, Barbour SL, Kowalewski M, Kaufman DS, Romanek CS, Simões MG, Wehmiller JF (2010) Quantitative estimates and modeling of time averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428–452

    Article  Google Scholar 

  • Kvale EP (2006) The origin of neap-spring tidal cycles. Mar Geol 235:5–18

    Article  Google Scholar 

  • Lee DE (1978) Aspects of the ecology and paleoecology of the brachiopod Notosaria nigricans. J R Soc N Z 8:395–417

    Article  Google Scholar 

  • Lee DE, Brunton CHC, Taddei Ruggiero E, Caldara M, Simone O (2001) The Cenozoic brachiopod Terebratula: its type species, neotype and other included species. Bull Nat Hist Mus (Geol) 57:83–93

    Google Scholar 

  • Lees A, Buller AT (1972) Modern temperature water and warm water shelf carbonate. Mar Geol 13:1767–1773

    Article  Google Scholar 

  • Llompart C, Calzada S (1982) Braquiópodos messinienses de la isla de Menorca. Bol R Soc Española Hist Nat 80:185–206

    Google Scholar 

  • Longhitano SG, Nemec W (2005) Statistical analysis of bed-thickness variation in a Tortonian succession of biocalcarenitic tidal dunes, Amantea Basin, Calabria, southern Italy. Sediment Geol 179:195–224

    Article  Google Scholar 

  • Longhitano SG, Sabato L, Tropeano M, Gallicchio S (2010) A mixed bioclastic-siliciclastic flood-tidal delta in a microtidal setting: depositional architectures and hierarchical internal organization (Pliocene, southern Apennine, Italy). J Sediment Res 80:36–53

    Article  Google Scholar 

  • Longhitano SG, Chiarella D, Di Stefano A, Messina C, Sabato L, Tropeano M (2011) Tidal signatures in Neogene to Quaternary mixed deposits of southern Italy straits and bays. Sediment Geol (in press)

  • MacKinnon DI, Beus SS, Lee DE (1993) Brachiopod fauna of the Kokoamu Greensand (Oligocene), New Zealand. N Z J Geol Geoph 36:327–347

    Article  Google Scholar 

  • Martin RE (2003) The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia 36:179–193

    Article  Google Scholar 

  • Martini E (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci A (ed) Proceedings of the 2nd International Conference on Planktonic Microfossils, Rome. Proceedings 2:739–785

  • Messina C, LaBarbera M (2004) Hydrodynamic behaviour of brachiopod shells: Experimental estimates and field observation. Palaios 19:441–450

    Article  Google Scholar 

  • Navarro V, Reolid M, Molina JM, Ruiz-Ortiz PA (2008) Slope breccias colonized by bivalves and serpulids during the Middle Jurassic (Subbetic, SE Spain). Facies 54:403–415

    Article  Google Scholar 

  • Nebelsick JH, Rasser MW, Bassi D (2005) Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies 51:197–216

    Article  Google Scholar 

  • Noble JPA, Logan A (1981) Size-frequency distributions and taphonomy of brachiopods: a recent model. Palaeogeogr Paleoclimatol Palaeoecol 36:87–105

    Article  Google Scholar 

  • Noble JPA, Logan A, Webb GR (1975) The Recent Terebratulina community in the rocky subtidal zone of the Bay of Fundy, Canada. Lethaia 9:1–17

    Article  Google Scholar 

  • Norris RD (1986) Taphonomic gradients in shelf fossil assemblages: Pliocene Purisima Formation, California. Palaios 1:256–270

    Article  Google Scholar 

  • Olóriz F, Reolid M, Rodríguez-Tovar FJ (2002) Fossil assemblages, lithofacies, taphofacies and interpreting depositional dynamics in the epicontinental Oxfordian of the Prebetic Zone, Betic Cordillera, southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 185:53–75

    Article  Google Scholar 

  • Olóriz F, Reolid M, Rodríguez-Tovar FJ (2004) Taphonomy of ammonite assemblages from the Middle-Upper Oxfordian (Transversarium?-Bifurcatus Zones) in the Internal Prebetic (Betic Cordillera, southern Spain): Taphonic populations and taphofacies to support ecostratigraphic interpretations. Riv Ital Paleont Stratigr 110:239–248

    Google Scholar 

  • Pajaud D (1976) Les brachiopods du Pliocène I de la Sierra de santa Pola (sud d’Alicante, Espagne): Terebratula terebratula (Linné, 1758) et Phapsirhynchia sanctapaulenses nov. gen., nov. sp. Ann Soc Géol Nord 96:99–106

    Google Scholar 

  • Pajaud D (1977) Les brachiopods du Pliocène I de la region d’Aguilas (Sud d’Almeria, Espagne). Ann Paléont (Invert) 63:59–75

    Google Scholar 

  • Payne JL, Finnegan S (2006) Controls on marine animal biomass through geological time. Geobiology 4:1–10

    Article  Google Scholar 

  • Peck LS (1996) Feeding and metabolism in the Antarctic brachiopod Liothyrella uva: a low-energy lifestyle species with restricted metabolic scope. R Soc Lond Proc B 263:223–228

    Article  Google Scholar 

  • Peck LS (2001) Physiology. In: Carlson S, Sandy M (eds) Brachiopods ancient and modern: a tribute to G. Arthur Cooper. Paleont Soc Pap 7:89–104

  • Peck LS (2008) Brachiopods and climate change. Trans R Soc Edinb Earth Envir Sci 98:451–456

    Google Scholar 

  • Pedley HM (1976) A palaeoecological study of the Upper Coralline Limestone, Terebratula-Aphelesia Bed (Miocene, Malta) based on bryozoan growth-form studies and brachiopod distributions. Palaeogeogr Palaeoclimatol Palaeoecol 20:209–234

    Article  Google Scholar 

  • Postma G, Roep TB (1985) Resedimented conglomerates in the bottomsets of Gilbert-type gravel deltas. J Sediment Petrol 55:874–885

    Google Scholar 

  • Radley JD (2010) Grazing bioerosion in Jurassic seas: a neglected factor in the Mesozoic marine revolution? Hist Biol 22:387–393

    Google Scholar 

  • Rhodes MC, Thompson RJ (1993) Comparative physiology of suspension-feeding in living brachiopods and bivalves: evolutionary implications. Paleobiology 19:322–334

    Google Scholar 

  • Richardson JR (1981) Recent brachiopods from New Zealand—background to the study cruises of 1977–79. N Z J Zool 8:133–143

    Article  Google Scholar 

  • Richardson JR, Watson JE (1975) Form and function in a recent free-living brachiopod Magadina cumingi. Paleobiology 1:379–387

    Google Scholar 

  • Rodríguez SC, Simões MG (2010) Taphonomy of Bouchardia rosea Rhynchonelliformea, Brachiopoda) shells from Ubatuba Bay, Brazil: implications for the use of taphonomic signatures in (paleo)environmental analysis. Ameghiniana 47:373–386

    Google Scholar 

  • Sepkoski JJ Jr, Bambach RK, Droser ML (1991) Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer Verlag, Berlin, pp 298–312

    Google Scholar 

  • Simões MG, Kowalewski M (2003) Modern accumulations of brachiopod shells in unconsolidated surficial beach deposits, northern coast of São Paulo State, Brazil: taphonomic implications for the genesis of skeletal concentration. In: 3rd Latin American congress of sedimentology, Belém, Brazil, Abstracts, pp 220–223

  • Simões MG, Kowalewski M, Torello FF, Guilardi RP, Mello LHC (2000) Early onset of modern-style shell beds in the Permian sequences of the Paraná Basin: implications for the Phanerozoic trend in bioclastic accumulations. Rev Brasil Geoc 30:499–503

    Google Scholar 

  • Simões MG, Rodrígues SC, de Moraes Leme JM, Bisaro Júnior MC (2005) The settling pattern of brachiopod shells: stratigraphic and taphonomic implications to shell bed formation and paleoecology. Rev Brasil Geoc 35:383–391

    Google Scholar 

  • Simões MG, Rodrígues SC, de Moraes Leme JM, Pires-Domingues RA (2007) Brachiopod shells on the beach: taphonomic overprinting in a fair-weather shell accumulation. J Taph 5:205–225

    Google Scholar 

  • Soria JM, Fernández J, Viseras C (1999) Late Miocene stratigraphy and palaeogeographic evolution of the intramontane Guadix Basin (Central Betic Cordillera, Spain): implications for an Atlantic–Mediterranean connection. Palaeogeogr Palaeoclimatol Palaeoecol 151:255–266

    Article  Google Scholar 

  • Soria JM, Fernández J, García F, Viseras C (2003) Correlative lowstand deltaic and shelf systems in the Guadix Basin (Late Miocene, Betic Cordillera, Spain): the stratigraphic record of forced and normal regressions. J Sediment Res 73:912–925

    Article  Google Scholar 

  • Sterren AF (2008) Concentraciones bioclásticas del Carbonífero–Pérmico Inferior en la Precordillera argentina. Variaciones temporales y relación con las tendencias propuestas para el Fanerozoico. Ameghiniana 45:303–320

    Google Scholar 

  • Taddei Ruggiero E (1985) Paleoecologia e biostratigrafia delle calcareniti a brachiopodi di Castro (Lecce). Bol Soc Nat Napoli 92:347–413

    Google Scholar 

  • Taddei Ruggiero E (1994) Neogene Salento brachiopod paleocommunities. Bol Soc Paleont Ital 33:197–213

    Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in Recent and fossil benthic communities. Plenum Press, New York, pp 479–625

    Google Scholar 

  • Thayer CW (1985) Brachiopods versus mussels: competition, predation, and palatability. Science 228:1527–1528

    Article  Google Scholar 

  • Tomašových A (2004) Effect of extrinsic factors on biofabric and brachiopod alteration in a shallow intraplatform carbonate setting (Upper Triassic, West Carpathians). Palaios 19:349–371

    Article  Google Scholar 

  • Tomašových A (2008) Substrate exploitation and resistance to biotic disturbance in the brachiopod Terebratalia transversa and the bivalve Pododesmus macrochisma. Mar Ecol Progr Ser 363:157–170

    Article  Google Scholar 

  • Tomašových A, Rothfus TA (2005) Differential taphonomy of modern brachiopods (San Juan Islands, Washington State): effect of intrinsic factors on damage and community-level abundance. Lethaia 38:271–292

    Article  Google Scholar 

  • Tomašových A, Zuschin M (2009) Variation in brachiopod preservation along a carbonate shelf-basin transect (Red Sea and Gulf of Aden): environmental sensitivity of taphofacies. Palaios 24:697–716

    Article  Google Scholar 

  • Tomašových A, Fürsich FT, Olszewski TD (2006a) Modeling shelliness and alteration in shell beds: variation in hardpart input and burial rates leads to opposing predictions. Paleobiology 32:278–298

    Article  Google Scholar 

  • Tomašových A, Fürsich FT, Wilmsen M (2006b) Preservation of autochthonous shell beds by positive feedback between increased hardpart-input rates and increased sedimentation rates. J Geol 114:287–312

    Article  Google Scholar 

  • Toscano-Grande A, García-Ramos D, Ruiz-Muñoz F, González-Regalado ML, Abad M, Civis-Llovera J, González-Delgado JA, Rico-García A, Martínez-Chacón ML, García EX, Pedón-Martín JG (2010) Braquiópodos neógenos del suroeste de la depression del Guadalquivir (sur de España). Rev Mex C Geol 27:254–263

    Google Scholar 

  • Valentine JW, Jablonski D (1983) Larval adaptations and patterns of brachiopod diversity in space and time. Evolution 37:1052–1061

    Article  Google Scholar 

  • Velbel MA, Brandt DS (1989) Differential preservation of brachiopod valves: Platystrophia ponderosa. Palaios 4:193–195

    Article  Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    Google Scholar 

  • Vermeij GJ (1995) Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125–152

    Google Scholar 

  • Westphal H, Halfar J, Freiwald A (2010) Heteroyoan carbonates in subtropical to tropical settings in the present and past. Int J Earth Sci 99:S1–S169

    Article  Google Scholar 

  • Zuschin M, Mayrhofer S (2009) Brachiopods from cryptic coral reef habitats in the northern Red Sea. Facies 55:335–344

    Google Scholar 

Download references

Acknowledgments

This research was supported by project CGL2009-07830/BTE and financed by the Spanish Ministry of Education and Science (MEC), the European Fund of Regional Development (FEDER), and Research Group RNM-200 of the Junta de Andalucía. A. Tomašových was supported by the Slovak Research and Development Agency (APVV-0248-07 and 0644-10), the Slovakian Scientific Grant Agency (VEGA 2/0068/11), and the National Science Foundation (DEB 0919451). We would like to thank Editor Franz T. Fürsich, Prof. Marcello G. Simões, (UNESP Botucatu) and Prof. James Nebelsick (Universität Tübingen) for careful reviews of the manuscript. We are grateful to a native English speaker (Jean Louise Sanders) for her assistance in reviewing the grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Reolid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reolid, M., García-García, F., Tomašových, A. et al. Thick brachiopod shell concentrations from prodelta and siliciclastic ramp in a Tortonian Atlantic–Mediterranean strait (Miocene, Guadix Basin, southern Spain). Facies 58, 549–571 (2012). https://doi.org/10.1007/s10347-012-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0296-2

Keywords

Navigation