, Volume 11, Issue 1, pp 15-27
Date: 08 Nov 2012

Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We present a new approach for mapping open cracks and tension fractures within rock slope instabilities and rock cliffs, which resides in high-resolution ground-based and airborne infrared thermography (IRT). The method is restricted to cold seasons, and its utility is demonstrated through three examples from the Flysch Belt of the Outer West Carpathians (rockslides at Kopce Hill and Mt. Kněhyně) and from the Northern Calcareous Alps (deep-seated gravitational slope deformations in Gschliefgraben/Mt. Traunstein). The approach is based on a contrast between temperatures deep within the rock mass, which at a depth of few meters represent local mean annual values, and winter-time temperatures of the ground surface. In winter, warmer, buoyant air from depth rises to the ground surface through open cracks and joints, and the temperature contrast can be detected by IRT. Our test survey was conducted in the beginning of February 2012, in order to achieve the best contrast between temperatures around open tension cracks and the adjacent ground. For temperature sensing, we used a FLIR B360 thermal camera; for airborne surveys in the ambient air, temperatures at the time of our surveys ranged from approximately −19 to −7 °C. IRT results conclusively revealed the presence of open cracks, loosened rock zones, and pseudo-karst caves over a distance sometimes greater than 1 km. The IRT approach proved useful for rapidly assessing the distribution of open cracks and tension fractures, key information required for assessing rockfall and rockslide hazard.