, Volume 54, Issue 1, pp 44-52
Date: 10 May 2007

Fine-scale genetic structure of red deer (Cervus elaphus ) in a French temperate forest

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Despite the classic population genetic view of a population as a network of sub-populations consisting of randomly mating individuals, the mating system and dispersal patterns of social animals affect the distribution of genetic variation on a local scale. The spatially open, forest-dwelling red deer (Cervus elaphus) population at the Petite Pierre National Reserve in north-eastern France is culled annually, with the management aim of maximising the number of adult males in the population, and is a typical example of an exploited red deer population from continental Europe. Through a change in management policy, the number of adult males in the population has increased over time, leading to a reduction in variance of male reproductive success (Bonenfant et al., 2002). In this study, we investigate the fine-scale genetic structure of the population using 14 microsatellite loci and attempt to find evidence for a change in this genetic structure over time. DNA was extracted from bone powder obtained by drilling into antlers and mandibular condyles. DNA was successfully extracted from up to 30-year-old samples, but it was necessary to genotype samples in duplicate to obtain reliable genetic profiles. Our results point towards a pattern of fine-scale spatial structure amongst female red deer in the study area, but not amongst males, as would be expected for a typical mammalian system with male-biased dispersal and female philopatry. In addition, our results hint at a decrease in spatial genetic structure amongst females over time, which might be related to a change in management policy, but small sample size limited the robustness of this conclusion.