, Volume 132, Issue 2, pp 219-230
Date: 23 Nov 2012

Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The influence of forest ageing on fine-root morphology and relations between fine-root and leaf characteristics is poorly studied. The aim of this study was to analyse age-driven changes in ectomycorrhizal roots (EcM roots) and leaf morphology in a chronosequence of silver birch (Betula pendula Roth.), which would provide a better understanding of adaptation responses and acclimation capacity of tree roots and leaves. The chronosequence included six age classes (3, 6, 14, 32, 45, and 60 years.). All stands had regenerated naturally and grew in a highly productive Oxalis forest site type in Estonia. Most changes in the morphology of EcM roots and leaves of silver birch occur faster at a young age. The functional parameters—mean specific area of EcM root (SRA) and leaf specific area (SLA) as well as leaf N—decreased with age. EcM root SRA and specific root length (SRL) decreased with stand age as a result of increased mean diameter and tissue density. In age classes of 6, 14, and 32 years, the total number of dominating EcM taxa was 34, and the distribution of four different dominating EcM exploration types (contact-, short-, medium-, long-distance) was similar. We conclude that high values of SRA, SLA, and leaf N measured in young silver birch stands indicate high activity of physiological processes necessary for fast-growing young trees. A decrease of SLA and SRA and N in the chronosequence of fertile stands of silver birch is most probably caused by down-regulation of growth, affecting simultaneously leaves and fine roots.

Communicated by R. Matyssek.