Skip to main content
Log in

Effect of hydropriming and acclimation treatments on Quercus rugosa acorns and seedlings

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

To facilitate restoration of the lava field forests surrounding Mexico City, we developed methods to improve the germination and field seedling performance of Quercus rugosa using hydropriming (regulated hydration of seeds in water), and we used special watering regimes to improve seedling acclimation. The size, dry mass, fresh mass and water content of seeds were measured, and curves were generated to evaluate acorn hydration and dehydration. The effects of stratification (5°C), heat shock (50°C) and scarification on germination were tested. All treated seeds and controls were germinated in control chambers at 21°C. One hydropriming cycle (PC) consisted of two hydration days followed by two dehydration days; treatments of 1, 2 and 3 PCs were tested. Seedlings from 1PC to 2PC were acclimated in a shade house under high and low watering regimes (400 and 200 mL week−1, respectively). In the shade house and field, the effects of hydropriming and watering treatments were evaluated by measuring length, basal diameter, crown cover, number of leaves and branches and leaf area of seedlings. Dry and fresh mass were used to calculate acorn water content. Dehydration and hydration curves displayed hysteresis. Acorns exhibited physiological dormancy, which could be overcome by stratification or by 1 month of storage. 1PC led to increased germination rates and final germination. In both the shade house and field, 1PC showed a positive effect on all seedling growth parameters except branch number. Field survival was not affected. Generally, 1PC favoured efficient seed germination, seedling vigour and homogenous plant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams M (2003) Where has all the white oaks gone? Bioscience 53:927–939

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Bonfil C, Soberón J (1999) Quercus rugosa seedling dynamics in relation to its re-introduction in a disturbed Mexican landscape. Appl Veg Sci 2:189–200

    Article  Google Scholar 

  • Bonner FT (1968) Water uptake and germination of red oak acorns. Bot Gaz 129:83–85

    Article  Google Scholar 

  • Bonner FT (1973) Storing red oak acorns. Tree Planters Notes 24:12–13

    Google Scholar 

  • Bonner FT (2003) Collection and care of acorns. A practical guide for seed collectors and nursery managers. http://www.nsl.fs.fed.us/COLECTION%20AND%CARE%20OF%20ACORNS.pdf. Accessed 22 May 2010

  • Bonner FT, Vozzo JA (1987) Seed biology and Technology of Quercus. USDA Forest Service, General Technical Report SO-66, New Orleans

  • Boubriak IH, Kargiolaki L, Osborne D (1997) The requirement for DNA repair in desiccation tolerance of germinating embryos. Seed Sci Res 7:95–105

    Article  Google Scholar 

  • Bradford K (1995) Water relations in seed germination. In: Kigel J (ed) Seed development and germination. Marcel Dekker, New York, pp 361–396

    Google Scholar 

  • Bray CM (1995) Biochemical processes during osmopriming of seeds. Water relations in seed germination. In: Kigel J (ed) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Calderón G, Rzedowski J (2001) Flora fanerogámica del valle de México. Instituto de Ecologia, A.C., Conabio, México

  • Connor K (2004) Storing acorns. Native Plants J 5:161–166

    Google Scholar 

  • Daws MI, Gaméné CS, Gliidewell SM, Pritchard HW (2004) Seed mass variation potentially masks a single critical water content in recalcitrant seeds. Seed Sci Res 14:185–195

    Article  Google Scholar 

  • Daws MI, Garwood NC, Pritchard HW (2006) Prediction of desiccation sensitivity in seeds of woody species: a probabilistic model based on two seed traits and 104 species. Ann Bot 97:667–674

    Article  PubMed  CAS  Google Scholar 

  • Devine DW, Harrington CA, Kraft JM (2010) Acorn storage alternatives tested on Oregon white oak. Native Plants J 11:65–76

    Article  Google Scholar 

  • Doody CN, O’Reilly C (2008) Drying and soaking pretreatments affect germination in pedunculate oak. Ann For Sci 65:59. doi:10.1051/forest:2008027

    Article  Google Scholar 

  • FAO (2006) Global Forest Resources Assessment 2005. FAO Forestry Paper 147. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Finch-Savage WE, Farrant JM (1997) The development of dessication-sensitive seeds in Quercus robur L.: reserve accumulation and plant growth regulators. Seed Sci Res 7:35–39

    Article  CAS  Google Scholar 

  • Fujikura Y, Kraak HL, Basra AS, Karseen CM (1993) Hydropriming, a simple and inexpensive priming method. Seed Sci Tech 21:639–642

    Google Scholar 

  • González-Hidalgo B, Orozco-Segovia A, Diego-Pérez N (2001) La vegetación de la reserva ecológica Lomas del Seminario, Ajusco, México. Bol Soc Bot Méx 69:77–99

    Google Scholar 

  • Hong TD, Ellis RH (1996) A protocol to determine seed storage behaviour. IPGRI Technology Bulletin No. 1. Intl. Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Ingram M (2008) Urban ecological restoration. Ecol Restor 23:175–177

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate. Cambridge University Press, Cambridge

    Google Scholar 

  • McPherson G (1992) Ecology of oak woodlands in Arizona. In: Ffolliot P, Goottfried J, Bennett D, Hernández V, Ortega-Rubio A, Hamre R (eds) Ecology and management of oak and associated woodlands perspectives in the southwestern United States and northern México. USDA Forest Service, General Technical Report, New Orleans, pp 24–33

    Google Scholar 

  • Nixon KC (1998) El género Quercus en México. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Diversidad biológica de México: Orígenes y distribución. Instituto de Biología, Universidad Nacional Autónoma de México, pp 435–447

    Google Scholar 

  • Özbingöl N, O’Reilly C (2005) Increasing acorn moisture content followed by freezing-storage enhances germination in pedunculate oak. Forestry 78:73–81

    Article  Google Scholar 

  • Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice—a review. Plant Ecol 171:209–220

    Article  Google Scholar 

  • Pritchard HW, Daws M, Fletcher B, Gaméné C, Msanga H, Omondi W (2004) Ecological correlates of seed desiccation tolerance in tropical African dryland trees. Am J Bot 91:863–879

    Article  PubMed  Google Scholar 

  • Purohit VK, Palni LMS, Nandi SK (2009) Effect of pre-germination treatments on seed physiology and germination of central Himalayan oaks? Physiol Mol Biol Plants 15:319–325

    Article  Google Scholar 

  • Robledo JA (1997) Germinación y crecimiento de plántulas de cuatro especies de encinos de Ajusco D.F. Efecto del tamaño de la semilla. BcSc. Dissertation FES Zaragoza, Universidad Nacional Autónoma de México

  • Rodríguez MC, Orozco-Segovia A, Sánchez-Coronado ME, Vázquez–Yanes C (2000) Seed germination of six mature neotropical forest species in response to dehydration. Tree Physiol 20:693–699

    Google Scholar 

  • Sánchez JA, Orta R, Muñoz BC (2001) Tratamientos pre-germinativos de hidratación–deshidratación de las semillas y sus efectos en plantas de interés agrícola. Agron Costarricense 25:67–92

    Google Scholar 

  • Sánchez JA, Muñoz B, Montejo L (2003) Efectos de tratamientos robustecedores de semillas sobre la germinación y establecimiento de árboles pioneros bajo condiciones de estrés. Ecotropicos 16:91–112

    Google Scholar 

  • Sánchez-Coronado ME, Coates R, Castro-Colina L, Gamboa de Buen A, Paez-Valencia J, Barradas VL, Huante P, Orozco-Segovia A (2007) Improving seed germination and seedling growth of Omphalea oleifera (Euphorbiaceae) for restoration projects in tropical rain forests. For Ecol Manage 243:144–155

    Article  Google Scholar 

  • Schopmeyer CS (1974) Seeds of woody plants in the United States. Agriculture handbook 450. USDA Forest Service. Department of Agriculture, Washington, DC

    Google Scholar 

  • Siebe C (2009) La erupción del volcán Xitle y las lavas del Pedregal hace 1670 ±35 años AP y sus implicaciones. In: Lot A, Cano-Santana Z (eds) Biodiversidad del ecosistema del Pedregal de San Ángel. Universidad Nacional Autónoma de México, México, pp 43–49

    Google Scholar 

  • Soberón MJ, De la Maza R, Hernández A, Bonfil C (1991) Reporte técnico final del primer año del proyecto: restauración ecológica de Lomas del Seminario. Ajusco, Instituto de Ecología, Universidad Nacional Autónoma de México

    Google Scholar 

  • Struve DK (1998) Seed conditioning of red oak: a recalcitrant North American seed. Scientia Agric 55:67–73

    Google Scholar 

  • Thanos CA, Skordilis A (1987) The effects of light, temperature and osmotic stress on the germination of Pinus halepensis and P. brutia seeds. Seed Sci Technol 15:163–174

    Google Scholar 

  • Valencia AS (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Méx 75:33–53

    Google Scholar 

  • Vázquez-Yanes C, Batis AI, Alcocer M, Gual M, Sánchez C (1999) Árboles y Arbustos Nativos Potencialmente Valiosos Para la Restauración Ecológica y la Reforestación. Instituto de Ecologia, UNAM–Conabio, México

  • Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J (ed) Seed development and germination. Marcel Dekker, New York, pp 237–271

    Google Scholar 

  • Xia K, Seal CE, Chen WY, Zhou ZK, Pritchard HW (2010) Fruit oil contents of the genus Quercus (Fagaceae): a comparative study on acorns of subgenus Quercus and the Asian subgenus Cyclobalanopsis. Seed Sci Tech 38:136–145

    Google Scholar 

  • Xiao Z, Gao X, Steele MA, Zhang Z (2009) Frequency-dependent selection by tree squirrels: adaptive escape of nondormant white oaks. Behav Ecol 21:169–175

    Article  Google Scholar 

  • Zar JH (1974) Biostatistical analysis. Prentice-Hall, New Jersey

  • Zavala-Chávez F (2004) Desecación de bellotas y su relación con la viabilidad y germinación en nueve especies de encinos mexicanos. Ciencia Ergo Sum 11:177–185

    Google Scholar 

Download references

Acknowledgments

We thank Rocío Graniel Parra, Alejandro González Ponce and Daniel Valle Vidal for technical support. We also thank Francisco Hernández Hernández and Benito Sánchez Huerta for the climatological information (Observatorio Metereológico, UNAM). We are grateful to the two anonymous reviewers for the comments and suggestions that allowed a substantial improvement to the paper. This study was supported by the Grants CONACyT 47859-Q and PAPIIT IN222508. CONACyT also provided to L. Castro-Colina a McS scholarship for her studies in the Posgrado en Ciencias Biológicas (Orientación: Restauración Ecológica)-UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Orozco-Segovia.

Additional information

Communicated by K. Puettmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro-Colina, L., Martínez-Ramos, M., Sánchez-Coronado, M.E. et al. Effect of hydropriming and acclimation treatments on Quercus rugosa acorns and seedlings. Eur J Forest Res 131, 747–756 (2012). https://doi.org/10.1007/s10342-011-0548-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-011-0548-7

Keywords

Navigation