, Volume 129, Issue 2, pp 199-208
Date: 10 Nov 2009

Revisiting the use of soil water budget assessment to predict site productivity of sessile oak (Quercus petraea Liebl.) in the perspective of climate change

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Climate change is expected to increase the frequency and severity of drought events over the next few decades in Western Europe. Consequently, there is a crucial need for an efficient tool for field water budget diagnosis to enable forest managers to estimate tree survival and productivity. Robust estimates of water budget using soil and topography were compared for their ability to predict site yield of Quercus petraea (Matt.) Liebl. Site yield was estimated using site index at 100 years. Ninety-nine even-aged high-forest stands located in northern France were investigated. Water budget was estimated by topographic position and soil water capacity (SWC) calculated for different soil depths down to a maximum 2.0 m. (1) Site index predictions improved when calculating SWC for increasing depths until 1.0 m. (2) Site index predictions did not improve when calculating SWC at depths below 1.0 m, thus confirming that the water contained in deep soil layers is not used for tree growth but probably contributes to tree fitness or survival by maintaining a not too negative in-tree water potential. (3) Topographic position was also a predictor of site index in addition to SWC. Practical recommendations for estimating extractable soil water content are given.

Communicated by C. Ammer.