, Volume 128, Issue 5, pp 455-466,
Open Access This content is freely available online to anyone, anywhere at any time.

The effect of canopy position on growth and mortality in mixed sapling communities during self-thinning

Abstract

This research investigates how species in the sapling phase differ in growth and survival depending on light availability (as estimated by canopy position) by means of tree-ring analysis and modelling mortality. We harvested 120 live and 158 dead saplings in self-thinning communities consisting of Silver birch (Betula pendula Roth.), Scots pine (Pinus sylvestris L.), Japanese larch (Larix kaempferi Carr.) and Douglas fir (Pseudotsuga menziesii Mirb. Franco) in the Netherlands. Results are evaluated within the framework of a trade-off between high-light growth and low-growth survival. Radial growth, measured at ground level, generally declined over time. In addition, a decreasing light availability further reduced growth in all species except Douglas fir. Trees died when radial growth was reduced to about 0.5 mm year−1. Mortality in all species except Scots pine was significantly related to recent growth, but mortality curves were not different. The light-demanding Silver birch and Japanese larch differed from the shade-tolerant Douglas fir in both high-light growth and low-growth mortality, in line with a growth-survival trade-off. The light-demanding Scots pine did not fit this pattern as it was unable to transfer high radial growth into height gain, leaving it in suppressed canopy positions. This indicates the importance of height growth in the growth-survival trade-off. Differences in mortality probabilities affect the potential for coexistence, however, in all species also fast-growing individuals died suggesting additional factors causing mortality during self-thinning, other than direct competition for light.

Communicated by K. Puettmann.