Skip to main content
Log in

Intra-specific variation of behavioral signals in suppressing plant defenses in the green peach aphid Myzus persicae, feeding on the resistant wild peach Prunus davidiana

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The green peach aphid, Myzus persicae (Sulzer), is a generalist insect herbivore capable of using a wide range of cultivated plants and weeds. In this laboratory study, we examined the inter-clonal variation in M. persicae’s ability to exploit the wild peach Prunus davidiana, a source of genetic resistance to aphids used by peach breeding programs. An initial screening of a set of sexually reproducing clones collected from commercial orchards planted with susceptible varieties found significant genetic variation in aphid survival on P. davidiana. Comparison of two clones (Fr2 and Fr12) found marked differences in colony sizes achieved. A detailed analysis of probing and feeding behavior showed that the clone exhibiting the highest performance on P. davidiana (Fr2) initiated probing earlier than the lower performing clone (Fr12). Periods of non-probing were also significantly shorter for this clone. Finally, Fr2 produced more and longer events of watery saliva injection into sieve elements. We discuss these results in terms of host plant adaptation by aphids and their capacity to overcome plant-resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avinent L, Hermoso de Mendoza A, Llácer G (2008) Transmission of plum pox potyvirus Spain. EPPO Bull 24:669–674

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. Retrieved from http://CRAN.R-project.org/package=lme4

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops. An identification guide. Wiley-Interscience, Chichester, p 466

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Borghuis A, van Groenendael J, Madsen O, Ouborg J (2009) Phylogenetic analyses of the leaf beetle genus Galerucella: evidence for host switching at speciation? Mol Phylogenet Evol 53:361–367

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Brandt MA, Fuentes-Contreras E, Figueroa CC (2010) Differences in the detoxification metabolism between two clonal lineages of the aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) reared on tobacco (Nicotiana tabacum L.). Chil J Agric Res 70:567–575

    Article  Google Scholar 

  • Carletto J, Lombaert E, Chavigny P, Brévault T, Lapchin L, Vanlerberghe-Masutti F (2009) Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol Ecol 18:2198–2212

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Chavez CSA, Levin S, Gould F (1988) Physiological and behavioral adaptation of insects to varying environments: a mathematical model. Evolution 42:986–994

    Article  Google Scholar 

  • Crompton DS, Ode PJ (2010) Feeding behavior analysis of the soybean aphid (Hemiptera: Aphididae) on resistant soybean ‘Dowling’. J Econ Entomol 103:648–653

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Smith CM, Reese J, Edwards O, Reeck G (2012) Polymorphisms in salivary-gland transcripts of Russian wheat aphid biotypes 1 and 2. Insect Sci 19:429–440

    Article  CAS  Google Scholar 

  • Feder JL, Barlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic V, Filchak KE, Rull J, Aluja M (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc Natl Acad Sci USA 18:10314–10319

    Article  Google Scholar 

  • Fenton B, Kasprowicz L, Malloch G, Pickup J (2010) Reproductive performance of asexual clones of the peach-potato aphid, (Myzus persicae, Homoptera: Aphididae), colonising Scotland in relation to host plant and field ecology. Bull Entomol Res 100:451–460

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CC, Simon J-C, Le Gallic J-F, Prunier-Leterme N, Briones LM, Dedryver C-A, Niemeyer HM (2004) Effect of host defence chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae (Hemiptera: Aphididae). J Chem Ecol 30:2515–2525

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CC, Simon J-C, Le Gallic J-F, Prunier-Leterme N, Briones LM, Dedryver C-A, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 95:24–33

    Article  CAS  PubMed  Google Scholar 

  • Foulongne M, Pascal T, Arús P (2003) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238

    Article  CAS  PubMed  Google Scholar 

  • Fox J (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Softw 14:1–42

    Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58:166–174

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E (2006) Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem Mol Biol 36:219–227

    Article  CAS  PubMed  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain JL (2010) Compatible plant–aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    Article  PubMed  Google Scholar 

  • Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guillemaud T, Mieuzet L, Simon J-C (2003) Spatial and temporal genetic variability in French populations of the peach–potato aphid, Myzus persicae. Heredity 91:143–152

    Article  CAS  PubMed  Google Scholar 

  • Guillemaud T, Ciosi M, Lombaert M, Estoup E (2011) Biological invasions in agricultural settings: insights from evolutionary biology and population genetics. C R Biol 334:237–246

    Article  PubMed  Google Scholar 

  • Harmel N, Létocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165–174

    Article  CAS  PubMed  Google Scholar 

  • Herbert SL, Jia LL, Goggin FL (2007) Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ Entomol 36:458–467

    Article  Google Scholar 

  • Hewer A, Will T, van Bel AJE (2010) Plant cues for aphid navigation in vascular tissues. J Exp Biol 213:4030–4042

    Article  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Kassanis B, Sutic D (1965) Some results of recent investigations on Sharka (plum pox) virus disease. Zast Bilja 16:335–340

    Google Scholar 

  • Kleine S, Müller C (2011) Intraspecific plant chemical diversity and its relation to herbivory. Oecologia 166(1):175–186

    Article  PubMed  Google Scholar 

  • Knoblauch M, van Bel AJE (1998) Sieve tubes in action. Plant Cell 10:35–50

    Article  PubMed Central  CAS  Google Scholar 

  • Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, Clark SJ, Sunnucks P (2003) Migration and genetic structure of grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol Ecol 12:21–34

    Article  CAS  PubMed  Google Scholar 

  • Lombaert E, Carletto J, Piotte C, Fauvergue X, Lecoq H, Vanlerberghe-Massutti F, Lapchin L (2009) Response of melon aphid, Aphis gossypii, to host-plant resistance: evidence for high adaptive potential despite low genetic variability. Entomol Exp Appl 133:46–56

    Article  Google Scholar 

  • Moleas T, Addante T, Cilardi AM (1995) Différence de sensibilité de quelques variétés cultivées de pêcher aux pucerons. IOBC/WPRS Bull 18:12–15

    Google Scholar 

  • Mukanganyama S, Figueroa CC, Hasler JA, Niemeyer HM (2003) Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae). J Insect Physiol 49:223–229

    Article  CAS  PubMed  Google Scholar 

  • Mulatu BS, Applebaum W, Coll M (2004) A recently acquired host plant provides an oligophagous insect herbivore with enemy-free space. Oikos 107:231–238

    Article  Google Scholar 

  • Murphy SM (2004) Enemy-free space maintains swallowtail butterfly host shift. Proc Natl Acad Sci USA 101:18048–18052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolakakis N, Margaritopoulos J, Tsitsipis J (2003) Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. Bull Entomol Res 93:235–242

    Article  CAS  PubMed  Google Scholar 

  • Nowak H, Komor E (2010) How aphids decide what is good for them: experiments to test aphid feeding behaviour on Tanacetum vulgare (L.) using different nitrogen regimes. Oecologia 163:973–984

    Article  PubMed  Google Scholar 

  • Olivares-Donoso R, Troncoso AJ, Tapia DH, Aguilera-Olivares D, Niemeyer HM (2007) Contrasting performances of generalist and specialist Myzus persicae (Hemiptera: Aphididae) reveal differential prevalence of maternal effects after host transfer. Bull Entomol Res 97:61–67

    Article  CAS  PubMed  Google Scholar 

  • Prado E, Tjallingii WF (1997) Effects of previous plant infestation on sieve element acceptance by two aphids. Entomol Exp Appl 82:189–200

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Found for Stat Comp, Vienna

    Google Scholar 

  • Rausher MD (1993) The evolution of habitat preference: avoidance and adaptation. In: Kim KC, McPheron BA (eds) Evolution of insect pests. Wiley, New York, pp 259–283

    Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum Pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Article  Google Scholar 

  • Sacchetti P, Niccoli A (1995) Influence of Myzus persicae (Sulzer) attack on production in a peach orchard in Tuscany. Redia 78:187–197

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky JKA (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sarria E, Cid M, Garzo E, Fereres A (2009) Excel workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67:35–42

    Article  Google Scholar 

  • Sauge MH, Kervella J, Pascal T (1998a) Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus. Entomol Exp Appl 89:233–242

    Article  Google Scholar 

  • Sauge MH, Kervella J, Rahbé Y (1998b) Probing behaviour of the green aphid Myzus persicae on resistant Prunus genotypes. Entomol Exp Appl 86:223–232

    Article  Google Scholar 

  • Sauge MH, Mus F, Lacroze JP, Pascal T, Kervella J, Poessel JL (2006) Genotypic variation in induced resistance and induced susceptibility in the peach Myzus persicae aphid system. Oikos 113:305–313

    Article  Google Scholar 

  • Sauge MH, Poëssel JL, Guillemaud T, Lapchin L (2011) Resistance induction and herbivore virulence in the interaction between Myzus persicae (Sulzer) and a major aphid resistance gene (Rm2) from peach. Arthropod Plant Interact 5:369–377

    Article  Google Scholar 

  • Sauge MH, Lambert P, Pascal T (2012) Co-localisation of host plant resistance QTLs affecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree. Heredity 108:292–301

    Article  PubMed Central  PubMed  Google Scholar 

  • Singer MC, Wee B, Hawkins S, Butcher M (2008) Rapid natural and anthropogenic diet evolution: three examples from checkerspot butterflies. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 311–324

    Google Scholar 

  • Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12:612–621

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (2003) Biometry: the principles and practice of statistics in biological research. WH Freeman and Company, New York

    Google Scholar 

  • Tjallingii WF (1995) Regulation of phloem sap feeding by aphids. In: Chapman RF, De Boer G (eds) Regulatory mechanisms in insect feeding. Chapman and Hall, New York, pp 190–209

    Chapter  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  CAS  PubMed  Google Scholar 

  • Tjallingii WF, Cherqui A (1999) Aphid saliva and aphid–plant interactions. Exp Appl Entomol 10:163–170

    Google Scholar 

  • Uesugi A (2008) Evolution of host avoidance in a leaf mining fly, Amauromyza flavifrons. Entomol Exp Appl 128:398–402

    Article  Google Scholar 

  • Van Emden HF, Eastop VF, Hughes RD, Way MJ (1969) The ecology of Myzus persicae. Annu Rev Entomol 14:197–270

    Article  Google Scholar 

  • Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York

    Google Scholar 

  • Via S, Hawthorne DJ (2002) The genetic architecture of ecological specialization: correlated gene effects on host use and habitat choice in pea aphids. Am Nat 159:576–588

    Google Scholar 

  • Vorburger C, Lancaster M, Sunnucks P (2003) Environmentally related patterns of reproductive modes in aphid Myzus persicae and predominance of two ‘superclones’ in Victoria, Australia. Mol Ecol 12:3493–3504

    Article  CAS  PubMed  Google Scholar 

  • Weng Y, Perumal A, Burd JD, Rudd JC (2010) Biotypic diversity in greenbug (Hemiptera: Aphididae): microsatellite-based regional divergence and host-adapted differentiation. J Econ Entomol 103:1454–1463

    Article  PubMed  Google Scholar 

  • Will T, van Bel AJE (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737

    Article  CAS  PubMed  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, van Bel AJE (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Will T, Kornemann SR, Furch AC, Tjallingii WF, van Bel AJ (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Bio 212:3305–3312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the PhD thesis of MCB conducted at Programa de Doctorado en Ciencias mención Ecología y Evolución, Universidad Austral de Chile (UACh), under the supervision of CCF. The authors thank Thierry Pascal (INRA-UGAFL Avignon, France) for providing the resistant plant material used in this study. Also, we thank the valuable comments made by two anonymous referees. This work was funded by CONICYT-Anillos ACT-38; CONICYT-REDES R-01; FONDECYT N°1090378 and partially funded by Iniciativa Científica Milenio NC120027 and DID-UACH D-2008-13 grants. MCB, MHS, CR and CF conceived and designed the research. MCB, JAV and JPL conducted the experiments. CR and JAV contributed with data analysis. MCB wrote the manuscript with significant inputs from MHS, CR and CF. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Figueroa.

Additional information

Communicated by M. Jonsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Brandt, M.A., Verdugo, J.A., Ramírez, C.C. et al. Intra-specific variation of behavioral signals in suppressing plant defenses in the green peach aphid Myzus persicae, feeding on the resistant wild peach Prunus davidiana . J Pest Sci 88, 259–266 (2015). https://doi.org/10.1007/s10340-014-0614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0614-2

Keywords

Navigation