Skip to main content
Log in

The visual field paradox: a theoretical account on the reafference principle providing a common frame for the homogeneity and inhomogeneity of visual representation

  • Short Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Observations on the structure of the visual field and its central representation lead to a paradox. A functional dissociation is indicated in oculomotor or attentional control when different response modes are observed as a function of stimulus eccentricity. Alternatively, constancy of brightness throughout the visual field suggests its homogeneity. This paradox can be resolved, if perceptual and motor processes are not conceived of being controlled by separate neuronal mechanisms, but are interconnected within one frame of reference. The reafference principle allows to formulate such a common frame as it integrates afferent and efferent processes. On the basis of this concept, the visual field paradox can be interpreted as not being a paradox at all, but a necessary condition for optimal information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  CAS  Google Scholar 

  • Bao Y, Pöppel E (2007) Two spatially separated attention systems in the visual field: evidence from inhibition of return. Cogn Process 8:37–44

    Article  PubMed  Google Scholar 

  • Bao Y, Sander T, Trahms L, Pöppel E, Lei Q, Zhou B (2011) The eccentricity effect of inhibition of return is resistant to practice. Neurosci Lett 500:47–51

    Article  PubMed  CAS  Google Scholar 

  • Brandt S, Reiser M, Pöppel E (1988) Color induction: spatial gain of regional retinal disinhibition in different color channels. Naturwiss 75:574–575

    Article  PubMed  CAS  Google Scholar 

  • Buneo CA, Anderson RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606

    Article  PubMed  Google Scholar 

  • Chen L (2005) The topological approach to perceptual organization. Visual Cogn 12:553–637

    Article  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  PubMed  CAS  Google Scholar 

  • Frost D, Pöppel E (1976) Different programming modes of human saccadic eye movements as a function of stimulus eccentricity: indications of a functional subdivision of the visual field. Biol Cybern 23:39–48

    Article  PubMed  CAS  Google Scholar 

  • Pöppel E (1985) Bridging a neuronal gap: perceptual completion across a cortical scotoma is dependent on stimulus motion. Naturwiss 72:599

    Article  PubMed  Google Scholar 

  • Pöppel E (1986) Long-range colour-generating interactions across the retina. Nature 320:523–525

    Article  PubMed  Google Scholar 

  • Pöppel E (2005) Complementarity as a generative principle in visual perception. Visual Cogn 12:665–670

    Google Scholar 

  • Pöppel E, Harvey LO Jr (1973) Light-difference threshold and subjective brightness in the periphery of the visual field. Psychol Forsch 34:145–161

    Google Scholar 

  • Pöppel E, Held R, Frost D (1973) Residual visual function after brain wounds involving the central visual pathways in man. Nature 243:295–296

    Article  PubMed  Google Scholar 

  • Pöppel E, von Cramon D, Backmund H (1975) Eccentricity specific dissociation of visual functions in patients with lesions of the central visual pathways. Nature 256:489–490

    Article  PubMed  Google Scholar 

  • Roenneberg T, Pöppel E (1985) Topographical distribution of the summation property of Y-ganglion cells in the cat retina. Exp Brain Res 59:1–9

    Article  PubMed  CAS  Google Scholar 

  • Teuber HL (1960) Perception. Handbook Physiol Neurophysiol III:1595–1668

  • Tosoni A, Galati G, Romani GL, Corbetta M (2008) Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat Neurosci 11:1446–1453

    Article  PubMed  CAS  Google Scholar 

  • Van Buren JM (1963) The retinal ganglion cell layer. Charles C. Thomas, Springfield, IL

  • von Helmholtz H (1896) Handbuch der physiologischen Optik. Verlag von Leopold Voss, Hamburg und Leipzig, 2. Auflage

  • von Holst E, Mittelstaedt H (1950) Das reafferenzprinzip. Wechselwirkungen zwischen Zentralnervesystem und Peripherie. Naturwiss 37:464–476

    Google Scholar 

  • Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97:709–728

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Toyne MJ (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res 24:395–406

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Bao Y, Sander T, Trahms T, Pöppel E (2010) Dissociation of summation and peak latencies in visual processing: an MEG study on stimulus eccentricity. Neurosci Lett 483:101–104

    Article  PubMed  CAS  Google Scholar 

  • Zihl J, Lissy P, Pöppel E (1980) Brightness perception in the visual field: effects of retinal position and adaptation level. Psychol Res 41:297–304

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

This supplement was not sponsored by outside commercial interests. It was funded entirely by ECONA, Via dei Marsi, 78, 00185 Roma, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöppel, E., Bao, Y. The visual field paradox: a theoretical account on the reafference principle providing a common frame for the homogeneity and inhomogeneity of visual representation. Cogn Process 13 (Suppl 1), 285–287 (2012). https://doi.org/10.1007/s10339-012-0489-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-012-0489-1

Keywords

Navigation