, Volume 76, Issue 7-8, pp 363-373
Date: 10 Nov 2012

Spectrometric and Chromatographic Study of Reactive Oxidants Hypochlorous and Hypobromous Acids and Their Interactions with Taurine

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this study, we focused on the studying of taurine complexes with phenol and sodium hypochlorite, and of taurine with sodium hypobromite by spectrometry, reverse phase chromatography and ion-exchange chromatography. The formed complexes were studied under various conditions such as temperature (10, 20, 30, 40, 50 and 60 °C), and/or time of interaction (0, 5, 10, 15, 20, 25 and 30 min). In addition, we optimized high performance liquid chromatography coupled with UV detector for detection of taurine and its complexes with the acids. Taurine–phenol–hypochlorite complex was effectively separated under isocratic elution, mobile phase water:methanol 30:70 %, v:v, flow rate 1 mL min−1 and 55 °C. Taurine-bromamine complex was isolated under the following optimized conditions as isocratic elution, mobile phase water:methanol 85:15 % v:v, flow rate 1 mL min−1 and 55 °C. The limits of detection (3 S/N) were estimated as 1 μM for both types of complexes, i.e. for taurine. Further, we estimated recovery in one sample of urine (male 25 years), commercially achieved energy drink and tea leaves and varied from 79 to 86 %. Further, we aimed our attention at investigating the ability of the above characterized taurine and taurine complexes to scavenge reactive oxygen species. For this purpose, an ion-exchange liquid chromatography with post-column derivatization with ninhydrin and VIS detector was used. It clearly follows from the results obtained that taurine itself reacts with peroxide more intensely than in a bound form, which can be associated with the highest signal decrease. Complexes stabilized structure taurine against peroxide radicals, resulting in slower decreasing of peak heights. The most stable was taurine complexes with phenol and hypobromite.

Published in the special paper collection Advances in Chromatography and Electrophoresis & Chiranal 2012 with guest editor Jan Petr.