Skip to main content

Advertisement

Log in

Developmental stress: evidence for positive phenotypic and fitness effects in birds

Journal of Ornithology Aims and scope Submit manuscript

Abstract

The developmental environment has strong and pervasive effects on animal phenotype. Exposure to stress during development (in the form of elevated glucocorticoid hormones or food restriction) is one environmental cue that can have strong formative effects on morphology, physiology, and behavior. Although many of the effects of developmental stress appear negative, there is increasing evidence for an adaptive role of developmental stress in shaping animal phenotype. Here, we take a three-pronged approach to review studies that have uncovered positive effects of developmental stress on phenotype in birds. We focus on studies that: (1) examine phenotypic effects likely to increase fitness in offspring, (2) directly identify increased fitness in offspring, or (3) provide evidence of fitness benefits to the mother, at a cost to the offspring. Throughout, we focus on studies that evaluate the environment when assessing the ‘costs/benefits’ of phenotype alterations and examine the effects of developmental stress across life-history stages. Finally, we consider the two common methods used to simulate developmental stress: food restriction and direct hormone manipulation. Although these methods are often considered to elicit equivalent responses, there has been very little discussion of this in the literature. To this end, we review the main methods used to implement developmental stress in experimental studies and discuss how they may simulate different environmental conditions. In light of our conclusions, we propose possible avenues for future research, stressing the need for a greater focus on direct fitness metrics, longitudinal studies, and experiments in free-living animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badyaev AV (2014) Epigenetic resolution of the “curse of complexity” in adaptive evolution of complex traits. J Physiol Lond 592:2251–2260. doi:10.1113/jphysiol.2014.272625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Banerjee SB, Arterbery AS, Fergus DJ, Adkins-Regan E (2012) Deprivation of maternal care has long-lasting consequences for the hypothalamic-pituitary-adrenal axis of zebra finches. P Roy Soc B Biol Sci 279:759–766. doi:10.1098/rspb.2011.1265

    Article  Google Scholar 

  • Blas J, Bortolotti GR, Tella JL, Baos R, Marchant TA (2007) Stress response during development predicts fitness in a wild, long lived vertebrate. P Natl Acad Sci 104:8880–8884. doi:10.1073/pnas.0700232104

    Article  CAS  Google Scholar 

  • Bonaparte KM, Riffle-Yokoi C, Burley NT (2011) Getting a head start: diet, sub-adult growth, and associative learning in a seed-eating passerine. Plos One 6:e23775

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Breuner C (2008) Maternal stress, glucocorticoids, and the maternal/fetal match hypothesis. Horm Behav 54:485–487. doi:10.1016/j.yhbeh.2008.05.013

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Spencer KA, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). P Roy Soc B Biol Sci 270:1149–1156. doi:10.1098/rspb.2003.2330

    Article  CAS  Google Scholar 

  • Buchanan KL, Leitner S, Spencer KA, Goldsmith AR, Catchpole CK (2004) Developmental stress selectively affects the song control nucleus HVC in the zebra finch. P Roy Soc B Biol Sci 271:2381–2386

    Article  Google Scholar 

  • Cabezas S, Blas J, Marchant TA, Moreno S (2007) Physiological stress levels predict survival probabilities in wild rabbits. Horm Behav 51:313–320

    Article  PubMed  CAS  Google Scholar 

  • Calandreau L et al (2011) Effect of one week of stress on emotional reactivity and learning and memory performances in Japanese quail. Behav Brain Res 217:104–110

    Article  PubMed  Google Scholar 

  • Carmona-Isunza MC, Nunez-de la Mora A, Drummond H (2013) Chronic stress in infancy fails to affect body size and immune response of adult female blue-footed boobies or their offspring. J Avian Biol 44:390–398. doi:10.1111/j.1600-048X.2013.00057.x

    Article  Google Scholar 

  • Chin EH, Love OP, Verspoor JJ, Williams TD, Rowley K, Burness G (2009) Juveniles exposed to embryonic corticosterone have enhanced flight performance. P Roy Soc B Biol Sci 276:499–505. doi:10.1098/rspb.2008.1294

    Article  Google Scholar 

  • Chin EH, Quinn JS, Burness G (2013) Acute stress during ontogeny suppresses innate, but not acquired immunity in a semi-precocial bird (Larus delawarensis). Gen Comp Endocr 193:185–192. doi:10.1016/j.ygcen.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  • Coslovsky M, Richner H (2011) Predation risk affects offspring growth via maternal effects. Funct Ecol 25:878–888. doi:10.1111/j.1365-2435.2011.01834.x

    Article  Google Scholar 

  • Crino OL, Van Oorschot BK, Johnson EE, Malisch JL, Breuner CW (2011) Proximity to a high traffic road: glucocorticoid and life history consequences for nestling white-crowned sparrows. Gen Comp Endocr 173:323–332. doi:10.1016/j.ygcen.2011.06.001

    Article  PubMed  CAS  Google Scholar 

  • Crino OL, Driscoll SC, Breuner CW (2014a) Corticosterone exposure during development has sustained but not lifelong effects on body size and total and free corticosterone responses in the zebra finch. Gen Comp Endocr 196:123–129. doi:10.1016/j.ygcen.2013.10.006

    Article  PubMed  CAS  Google Scholar 

  • Crino OL, Driscoll SC, Ton R, Breuner CW (2014b) Corticosterone exposure during development improves performance on a novel foraging task in zebra finches. Anim Behav 91:27–32

    Article  Google Scholar 

  • Crino OL, Prather CT, Driscoll SC, Good JM, Breuner CW (2014c) Developmental stress increases reproductive success in male zebra finches, P Roy Soc B Biol Sci 281. doi:10.1098/Rspb.2014.1266(doi:Artn 20141266)

  • Fairhurst GD, Treen GD, Clark RG, Bortolotti GR (2012) Nestling corticosterone response to microclimate in an altricial bird. Can J Zool 90:1422–1430. doi:10.1139/cjz-2012-0096

    Article  CAS  Google Scholar 

  • Forstmeier W, Schielzeth H, Schneider M, Kempenaers B (2007) Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata). Mol Ecol Notes 7:1026–1028. doi:10.1111/j.1471-8286.2007.01762.x

    Article  CAS  Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158. doi:10.1126/science.286.5442.1155

    Article  PubMed  CAS  Google Scholar 

  • Franzke A, Reinhold K (2013) Transgenerational effects of diet environment on life-history and acoustic signals of a grasshopper. Behav Ecol 24:734–739. doi:10.1093/beheco/ars205

    Article  Google Scholar 

  • Gil D, Naguib M, Riebel K, Rutstein A, Gahr M (2006) Early condition, song learning, and the volume of song brain nuclei in the zebra finch (Taeniopygia guttata). J Neurobiol 66:1602–1612. doi:10.1002/Neu.20312

    Article  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56:311–317. doi:10.1203/01.Pdr.0000135998.08025.Fb

    Article  PubMed  Google Scholar 

  • Goerlich VC, Natt D, Elfwing M, Macdonald B, Jensen P (2012) Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the preococial chicken. Horm Behav 61:711–718

    Article  PubMed  CAS  Google Scholar 

  • Grindstaff JL, Hunsaker VR, Cox SN (2012) Maternal and developmental immune challenges alter behavior and learning ability of offspring. Horm Behav 62:337–344. doi:10.1016/j.yhbeh.2012.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Haussmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM (2012) Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. P Roy Soc B Biol Sci 279:1447–1456. doi:10.1098/rspb.2011.1913

    Article  CAS  Google Scholar 

  • Hayward LS, Wingfield JC (2004) Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen Comp Endocr 135:365–371. doi:10.1016/j.ygcen.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  • Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: pathways, effects, function and perspectives. Neurosci Biobehav R 35:1484–1501. doi:10.1016/j.neubiorev.2011.04.010

    Article  Google Scholar 

  • Honarmand M, Goymann W, Naguib M (2010) Stressful dieting: nutritional conditions but not compensatory growth elevate corticosterone levels in zebra finch nestlings and fledglings. Plos One. doi:10.1371/journal.pone.0012930 ARTN e12930

    PubMed  PubMed Central  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF (2001) Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J Comp Physiol B 171:701–709. doi:10.1007/s003600100230

    Article  PubMed  CAS  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Wingfield JC (2003) Benefits and costs of increased levels of corticosterone in seabird chicks. Horm Behav 43:140–149

    Article  PubMed  CAS  Google Scholar 

  • Kriengwatana B, Wada H, Schmidt KL, Taves MD, Soma KK, MacDougall-Shackleton SA (2014) Effects of nutritional stress during different developmental periods on song and the hypothalamic-pituitary-adrenal axis in zebra finches. Horm Behav 65:285–293. doi:10.1016/j.yhbeh.2013.12.013

    Article  PubMed  CAS  Google Scholar 

  • Liu D et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662. doi:10.1126/science.277.5332.1659

    Article  PubMed  CAS  Google Scholar 

  • Loiseau C, Sorci G, Dano S, Chastel O (2008) Effects of experimental increase of corticosterone levels on begging behavior, immunity and parental provisioning rate in house sparrows. Gen Comp Endocr 155:101–108. doi:10.1016/j.ygcen.2007.03.004

    Article  PubMed  CAS  Google Scholar 

  • Love OP, Williams TD (2008a) The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am Nat 172:E135–E149. doi:10.1086/590959

    Article  PubMed  Google Scholar 

  • Love OP, Williams TD (2008b) Plasticity in the adrenocortical response of a free-living vertebrate: the role of pre- and post-natal developmental stress. Horm Behav 54:496–505

    Article  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Naninck EFG, van Goudoever JB, Fitzsimons C, Joels M, Korosi A (2013) Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 36:621–631. doi:10.1016/j.tins.2013.08.002

    Article  PubMed  CAS  Google Scholar 

  • Lynn SE, Kern MD (2014) Environmentally relevant bouts of cooling stimulate corticosterone secretion in free-living eastern bluebird (Sialia sialis) nestlings: potential links between maternal behavior and corticosterone exposure in offspring. Gen Comp Endocr 196:1–7. doi:10.1016/j.ygcen.2013.11.011

    Article  PubMed  CAS  Google Scholar 

  • MacDougall-Shackleton SA, Spencer KA (2012) Developmental stress and birdsong: current evidence and future directions. J Ornithol 153:S105–S117. doi:10.1007/s10336-011-0807-x

    Article  Google Scholar 

  • Matthews SG (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrin Met 13:373–380. doi:10.1016/S1043-2760(02)00690-2

    Article  CAS  Google Scholar 

  • McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633. doi:10.1152/physrev.00053.2003

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe NB, Ure SE (1995) Diurnal-variation in-flight performance and hence potential predation risk in small birds. P Roy Soc B Biol Sci 261:395–400. doi:10.1098/rspb.1995.0165

    Article  Google Scholar 

  • Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Change 2:858–861. doi:10.1038/Nclimate1599

    Article  CAS  Google Scholar 

  • Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos T R Soc B 363:1635–1645. doi:10.1098/rstb.2007.0011

    Article  Google Scholar 

  • Monaghan P, Heidinger BJ, D’Alba L, Evans NP, Spencer KA (2012) For better or worse: reduced adult lifespan following early-life stress is transmitted to breeding partners. P Roy Soc B Biol Sci 279:709–714. doi:10.1098/rspb.2011.1291

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi:10.1016/S0169-5347(98)01472-4

    Article  PubMed  CAS  Google Scholar 

  • Muller C, Jenni-Eiermann S, Jenni L (2009) Effects of a short period of elevated circulating corticosterone on postnatal growth in free-living Eurasian kestrels Falco tinnunculus. J Exp Biol 212:1405–1412. doi:10.1242/Jeb.024455

    Article  PubMed  CAS  Google Scholar 

  • Nesan D, Vijayan MM (2013) Role of glucocorticoid in developmental programming: evidence from zebrafish. Gen Comp Endocr 181:35–44. doi:10.1016/j.ygcen.2012.10.006

    Article  PubMed  CAS  Google Scholar 

  • Noble DWA, McFarlane SE, Keogh JS, Whiting MJ (2014) Maternal and additive genetic effects contribute to variation in offspring traits in a lizard. Behav Ecol. doi:10.1093/beheco/aru032

    Google Scholar 

  • Nowicki S, Peters S, Podos J (1998) Song learning, early nutrition and sexual selection in songbirds. Am Zool 38:179–190

    Article  Google Scholar 

  • Nowicki S, Searcy WA, Peters S (2002) Brain development, song learning and mate choice in birds: a review and experimental test of the “nutritional stress hypothesis”. J Comp Physiol A 188:1003–1014. doi:10.1007/s00359-002-0361-3

    Article  CAS  Google Scholar 

  • Patterson SH, Hahn TP, Cornelius JM, Breuner CW (2014) Natural selection and glucocorticoid physiology. J Evol Biol 27:259–274

    Article  PubMed  CAS  Google Scholar 

  • Pravosudov VV, Kitaysky AS (2006) Effects of nutritional restrictions during post-hatching development on adrenocortical function in western scrub-jays (Aphelocoma californica). Gen Comp Endocr 145:25–31. doi:10.1016/j.ygcen.2005.06.011

    Article  PubMed  CAS  Google Scholar 

  • Pravosudov VV, Lavenex P, Omanska A (2005) Nutritional deficits during early development affect hippocampal structure and spatial memory later in life. Behav Neurosci 119:1368–1374

    Article  PubMed  CAS  Google Scholar 

  • Prudic KL, Jeon C, Cao H, Monteiro A (2011) Developmental plasticity in sexual roles of butterfly species drives mutational selection. Science 331:73–75

    Article  PubMed  CAS  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    Article  PubMed  Google Scholar 

  • Roulin A et al (2008) Corticosterone mediates the condition-dependent component of melanin-based coloration. Anim Behav 75:1351–1358. doi:10.1016/j.anbehav.2007.09.007

    Article  Google Scholar 

  • Saino N, Romano M, Ferrari RP, Martinelli R, Moller AP (2005) Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. J Exp Zool Part A 303A:998–1006

    Article  CAS  Google Scholar 

  • Schmidt KL, MacDougall-Shackleton EA, Soma KK, MacDougall-Shackleton SA (2014) Developmental programming of the HPA and HPG axes by early-life stress in male and female song sparrows. Gen Comp Endocr 196:72–80

    Article  PubMed  CAS  Google Scholar 

  • Schoech SJ, Rensel MA, Heiss RS (2011) Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: a review. Curr Zool 57:514–530

    CAS  Google Scholar 

  • Schutz KE, Forkman B, Jensen P (2001) Domestication effects on foraging strategy, social behaviour and different fear responses: a comparison between the red junglefowl (Gallus gallus) and a modern layer strain. Appl Anim Behav Sci 74:1–14

    Article  Google Scholar 

  • Sewall KB, Soha JA, Peters S, Nowicki S (2013) Potential trade-off between vocal ornamentation and spatial ability in a songbird. Biol Lett 9:2013. doi:10.1098/Rsbl.2013.0344 Unsp0344

    Article  Google Scholar 

  • Sheldon BC (2002) Adaptive maternal effects and rapid population differentiation. Trends Ecol Evol 17:247–249. doi:10.1016/S0169-5347(02)02459-X

    Article  Google Scholar 

  • Sheriff MJ, Love OP (2013) Determining the adaptive potential of maternal stress. Ecol Lett 16:271–280. doi:10.1111/Ele.12042

    Article  PubMed  CAS  Google Scholar 

  • Spencer KA, MacDougall-Shackleton SA (2011) Indicators of development as sexually selected traits: the developmental stress hypothesis in context. Behav Ecol 22:1–9. doi:10.1093/beheco/arq068

    Article  Google Scholar 

  • Spencer KA, Verhulst S (2007) Delayed behavioral effects of postnatal exposure to corticosterone in the zebra finch (Taeniopygia guttata). Horm Behav 51:273–280. doi:10.1016/j.yhbeh.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  • Spencer KA, Buchanan KL, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm Behav 44:132–139. doi:10.1016/S0018-506x(03)00124-7

    Article  PubMed  CAS  Google Scholar 

  • Spencer KA, Wimpenny JH, Buchanan KL, Lovell PG, Goldsmith AR, Catchpole CK (2005) Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behav Ecol Sociobiol 58:423–428. doi:10.1007/s00265-005-0927-5

    Article  Google Scholar 

  • Spencer KA, Evans NP, Monaghan P (2009) Postnatal Stress in Birds: a Novel Model of Glucocorticoid Programming of the Hypothalamic-Pituitary-Adrenal Axis. Endocrinology 150:1931–1934. doi:10.1210/En.2008-1471

    Article  PubMed  CAS  Google Scholar 

  • Stamps J (2003) Behavioural processes affecting development: Tinbergen’s fourth question comes of age. Anim Behav 66:1–13. doi:10.1006/anbe.2003.2180

    Article  Google Scholar 

  • Tissier ML, Williams TD, Criscuolo F (2014) Maternal effects underlie ageing costs of growth in the zebra finch (Taeniopygia guttata). Plos One. doi:10.1371/journal.pone.0097705

    Google Scholar 

  • Tschirren B, Rutstein AN, Postma E, Mariette M, Griffith SC (2009) Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches. J Evolution Biol 22:387–395

    Article  CAS  Google Scholar 

  • Vallee M, Mayo M, Dellu F, LeMoal M, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636

    PubMed  CAS  Google Scholar 

  • Wada H, Breuner CW (2008) Transient elevation of corticosterone alters begging behavior and growth of white-crowned sparrow nestlings. J Exp Biol 211:1696–1703. doi:10.1242/Jeb.009191

    Article  PubMed  CAS  Google Scholar 

  • Walker BG, Boersma PD, Wingfield JC (2005a) Physiological and behavioral differences in Magellanic Penguin chicks in undisturbed and tourist-visited locations of a colony. Conserv Biol 19:1571–1577. doi:10.1111/j.1523-1739.2005.00104.x

    Article  Google Scholar 

  • Walker BG, Wingfield JC, Boersma PD (2005b) Age and food deprivation affects expression of the glucocorticosteroid stress response in magellanic penguin (Spheniscus magellanicus) chicks. Physiol Biochem Zool 78:78–89

    Article  PubMed  CAS  Google Scholar 

  • Weaver ICG et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi:10.1038/Nn1276

    Article  PubMed  CAS  Google Scholar 

  • Wilsterman K, Mast AD, Luu TH, Haussmann MF (2015) The timing of embryonic exposure to elevated temperature alters stress endocrinology in domestic chickens (Gallus domesticus). Gen Comp Endocr 212:10–16

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Integr Comp Biol 38:191–206

    CAS  Google Scholar 

  • Zimmer C, Spencer KA (2014) Reduced resistance to oxidative stress during reproduction as a cost of early-life stress. Comp Biochem Phys A 183:9–13

    Article  Google Scholar 

  • Zimmer C, Boogert NJ, Spencer KA (2013) Developmental programming: cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm Behav 64:494–500. doi:10.1016/j.yhbeh.2013.07.002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Kendra Sewall, Haruka Wada and Brit Heidinger for organizing the symposium on developmental stress. The Wildlife Biology Program at the University of Montana provided travel support to CWB to attend the IOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondi L. Crino.

Additional information

Communicated by E. Matthysen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crino, O.L., Breuner, C.W. Developmental stress: evidence for positive phenotypic and fitness effects in birds. J Ornithol 156 (Suppl 1), 389–398 (2015). https://doi.org/10.1007/s10336-015-1236-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1236-z

Keywords

Navigation