Skip to main content
Log in

Spring stopover patterns of migrating Whooper Swans (Cygnus cygnus): temperature as a predictor over a 10-year period

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The decision by birds to stop or not (i.e. stopover decisions) during migration can affect their fitness and also the function of ecosystems, as well as, in a detrimental way, agricultural activities by grazing, trampling and nutrient translocation. We studied how temperature influences the stopover pattern of a large grazing waterfowl. Specifically, we compared the variation in the duration, start and end of the stopover period of Whooper Swans (Cygnus cygnus) with temperatures during the pre-arrival period at Lake Tysslingen in south-central Sweden during a 10-year period. The start day of the stopover period was negatively correlated to the mean temperature of the pre-arrival period. However, the temperature during the pre-arrival period did not explain the variation in the end of the stopover period. Furthermore, the duration of the stopover period was negatively correlated to the start but not to the end of the stopover period. This pattern follows observations that temperature is closely linked to food supply and availability of open water in other waterfowl. In the light of our findings, we conclude that an increased temperature will result in a spatial and temporal shift in the stopover pattern of Whooper Swans along the migration route, and in our specific case the birds will probably arrive earlier in spring and consequently stay longer within the studied area. Moreover, the prolonged stay at the stopover site will probably also result in increased grazing pressure and risk of damage to crops.

Zusammenfassung

Muster kurzer Zwischenstopps bei ziehenden Singschwänen ( Cygnus cygnus ) im Frühjahr: Temperatur als Vorhersage-Indikator über einen Zeitraum von zehn Jahren

Die Entscheidung, den Zug zu unterbrechen oder weiterzuziehen, kann die Fitness von Vögeln beeinflussen, aber auch das Funktionieren von Ökosystemen und, auf negative Weise, landwirtschaftliche Aktivitäten durch Grasen, Zertrampeln und Nährstoffverlagerungen. Wir untersuchten, wie die Temperatur das Muster von Zwischenstopps großer, grasenden Wasservögel beeinflusste. Konkret verglichen wir über einen Zeitraum von zehn Jahren die Variationen in Beginn, Dauer und Ende der Zugunterbrechungen von Singschwänen mit den Temperaturen, die in der Zeit vor den Unterbrechungen am Tysslingen-See in Südwest-Schweden herrschten. Der Tag des Zwischenstoppbeginns korrelierte negativ mit der mittleren Temperatur während der Zeit vor der Unterbrechung. Aber die Variationen in den End-Tagen der Zwischenstopps konnten nicht mit der Temperatur während der Zeit vor der Ankunft der Vögel erklärt werden. Außerdem korrelierte die Länge der Unterbrechungen negativ mit dem Beginn, aber nicht mit dem Ende der Unterbrechungszeit. Dieses Muster entspricht Beobachtungen, nach denen bei anderen Wasserzugvögeln die Temperatur eng mit dem Nahrungsangebot und dem Vorhandensein offener Wasserflächen zusammenhängt. Aus unseren Ergebnissen schließen wir, dass bei Singschwänen eine höhere Temperatur zu einer zeitlichen und räumlichen Verschiebung von Unterbrechungen auf ihrer Zugroute führt und die Vögel in unserem speziellen Fall wahrscheinlich früher im Frühjahr ankommen und entsprechend länger im Untersuchungsgebiet verbleiben. Ein längerer Aufenthalt führt außerdem vermutlich zu größerem Beweidungsdruck und zu einem höheren Schadens-Risiko bei den angebauten Feldfrüchten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617

    Article  Google Scholar 

  • Anonymous (2008) Tysslingen. Sjöfaktablad, Länstyrelsen Örebro (In Swedish)

  • Babcock CA, Fowler AC, Ely CR (2002) Nesting ecology of Tundra Swans on the coastal Yukon-Kuskokwim Delta, Alaska. Waterbirds 25:236–240

    Google Scholar 

  • Brazil M (2003) The whooper swan. Black, London

    Google Scholar 

  • Colhoun K, Day KR (2002) Effects of grazing on grasslands by wintering whooper swans. Waterbirds 25:168–176

    Google Scholar 

  • Conover M (2002) Resolving human-wildlife conflicts: the science of wildlife damage management. Lewis, Boca Raton

    Google Scholar 

  • Cope DR, Vickery JA, Rowcliffe JM (2005) From conflict to coexistence: a case study of geese and agriculture in Scotland. In: Woodroffe R, Thirgood S, Rabinowitz A (eds) People and wildlife: conflict or coexistence? Cambridge University Press, Cambridge

    Google Scholar 

  • Drent RJ, Fox AD, Stahl J (2006) Travelling to breed. J Ornithol 147:122–134

    Article  Google Scholar 

  • Duriez O, Bauer S, Destin A, Madsen J, Nolet BA, Stillman RA, Klaassen M (2009) What decision rules might pink-footed geese use to depart on migration? An individual-based model. Behav Ecol 20:560–569

    Article  Google Scholar 

  • Erni B, Liechti F, Underhill LG, Bruderer B (2002) Wind and rain govern the intensity of nocturnal bird migration in central Europe: a log-linear regression analysis. Ardea 90:155–166

    Google Scholar 

  • Gilyazov A, Sparks T (2002) Change in the timing of migration of common birds at the Lapland nature reserve (Kola Peninsula, Russia) during 1931–1999. Avian Ecol Behav 8:35–47

    Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Article  Google Scholar 

  • Hake M, Månsson J, Wiberg A (2010) A working model for preventing crop damage caused by increasing goose populations in Sweden. Ornis Svec 20:225–233

    Google Scholar 

  • Huin N, Sparks TH (1998) Arrival and progression of the swallow Hirundo rustica through Britain. Bird Study 45:361–370

    Article  Google Scholar 

  • Jahnukainen M (1963) On the spring migration of the whooper swan (Cygnus cygnus) in the Helsinki region in the years 1950–1961. Ornis Fenn 40:1–12

    Google Scholar 

  • Jensen RA, Wisz MS, Madsen J (2008) Prioritizing refuge sites for migratory geese to alleviate conflicts with agriculture. Biol Conserv 141:1806–1818

    Article  Google Scholar 

  • LaMontagne JM, Barclay RMR, Jackson LJ (2001) Trumpeter swan behaviour at spring-migration stopover areas in southern Alberta. Can J Zool 79:2036–2042

    Article  Google Scholar 

  • Laubek B (1995) Habitat use by whooper swans Cygnus cygnus and Bewick’s swans Cygnus columbianus bewickii wintering in Denmark: increasing agricultural conflicts. Wildfowl 46:8–15

    Google Scholar 

  • Laubek B, Nilsson L, Wieloch M, Koffijberg K, Sudfeldt C, Follestad A (1999) Distribution, numbers and habitat choice of the NW European whooper swan Cygnus cygnus population: results of an international census in January 1995. Vogelwelt 120:141–154

    Google Scholar 

  • MacMillan D, Hanley N, Daw M (2004) Costs and benefits of wild goose conservation in Scotland. Biol Conserv 119:475–485

    Article  Google Scholar 

  • Mathiasson S (1991) Eurasian whooper swan Cygnus cygnus migration, with particular reference to birds wintering in southern Sweden. Wildfowl (Suppl 1):201–208

    Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Article  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic, London

    Google Scholar 

  • Nilsson L (2002) Numbers of mute swans and whooper swans in Sweden, 1967–2000. Waterbirds 25:53–60

    Google Scholar 

  • Nilsson L (2008) Changes in numbers and distribution of wintering waterfowl in Sweden during forty years, 1967–2006. Ornis Svec 18:135–226

    Google Scholar 

  • Raab B, Vedin H (2004) Klimat, Sjöar och vattendrag. Bra Böcker, Jönköping (In Swedish)

  • Rees EC, Kirby JS, Gilburn A (1997) Site selection by swans wintering in Britain and Ireland; the importance of habitat and geographic location. Ibis 139:337–352

    Article  Google Scholar 

  • Samelius G, Alisauskas RT (2009) Habitat alteration by geese at a large arctic goose colony: consequences for lemmings and voles. Can J Zool 87:95–101

    Article  Google Scholar 

  • Sparks TH (1999) Phenology and the changing pattern of bird migration in Britain. Int J Biometeorol 2:134–138

    Article  Google Scholar 

  • Tryjanowski P, Kuzniak S, Sparks T (2002) Earlier arrival of some farmland migrants in western Poland. Ibis 144:62–68

    Article  Google Scholar 

  • Ullman M (2003) Tysslingen: svansjön. Vår Fågelvärld 1:21–24 (In Swedish)

    Google Scholar 

  • Van der Graaf AJ, Stahl J, Klimkowska A, Bakker JP, Drent RH (2006) Surfing on a green wave: how plant growth drives spring migration in the barnacle goose Branta leucopsis. Ardea 94:567–577

    Google Scholar 

  • Van Eerden MR (1990) The solution of goose damage problems in Netherlands, with special reference to compensation schemes. Ibis 132:253–261

    Article  Google Scholar 

  • Van Eerden MR, Drent RH, Stahl J, Bakker JP (2005) Connecting seas: western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Glob Change Biol 11:894–908

    Article  Google Scholar 

  • Vickery JA, Gill JA (1999) Managing grasslands for wild geese in Britain: a review. Biol Conserv 89:93–106

    Article  Google Scholar 

  • Visser M, Perdeck A, Balen J, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Change Biol 15:1859–1865

    Article  Google Scholar 

Download references

Acknowledgments

We thank the personnel at “Stiftelsen Tysslingen” for providing the data and the Swedish Environmental Protection Agency for financial support. We also thank two anonymous reviewers, G. Samelius, H. Andrén and P. Kjellander for valuable comments on the manuscript and M. Hake for advice at an early stage of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Månsson.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Månsson, J., Hämäläinen, L. Spring stopover patterns of migrating Whooper Swans (Cygnus cygnus): temperature as a predictor over a 10-year period. J Ornithol 153, 477–483 (2012). https://doi.org/10.1007/s10336-011-0763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0763-5

Keywords

Navigation