, Volume 151, Issue 3, pp 703-712

Seasonal migrations of four individual bar-headed geese Anser indicus from Kyrgyzstan followed by satellite telemetry

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Kyrgyz population of the bar-headed goose Anser indicus has declined dramatically during the past decades. Human persecution during migration and habitat loss at stopover and wintering sites are commonly regarded as most serious threats. However, little is known about seasonal movements, migration routes, and wintering sites of the bar-headed geese from Kyrgyzstan, which represent the westernmost geographical population of the species. As part of a conservation project, which also included reinforcement of the wild population by the release of hand-reared juveniles, in late summer of 1998, five bar-headed geese, three wild adults and two hand-reared goslings, were fitted with sun-powered satellite transmitters in order to track their movements from Lake Son Kul and Lake Chatyr Kul in Kyrgyzstan. The five individuals contributed very unevenly to the more than 5,000 signals in total that were received from the French ARGOS system: one failed after 8 weeks, while another one was tracked for more than 2 years. The four geese contributing to this study followed three completely different migration routes leading to their wintering areas in Pakistan, India and Uzbekistan, while stopover areas were situated in southern Tajikistan and in western Tibet. Both in autumn and spring the adult birds migrated distances of 1,280–1,550 km in two steps, with stopover periods of 32–46 days (autumn) and 16–23 days (spring). Flight speeds of up to 680 km per actual migration day were recorded regularly, even during crossings of very high summits. A hand-reared juvenile flew non-stop for 790 km to southern Uzbekistan and even visited southernmost Turkmenistan, where the species is very rarely seen. The timing of migration varied considerably between individuals but also for the same individual between years. We compare our tracking results with previous findings (field observations, ring recoveries, and satellite tracking results) and discuss them with respect to migration over high-mountain habitats and a general migration strategy of the species.

Communicated by F. Bairlein.