Skip to main content
Log in

FID modulus: a simple and efficient technique to phase and align MR spectra

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The post-processing of MR spectroscopic data requires several steps more or less easy to automate, including the phase correction and the chemical shift assignment. First, since the absolute phase is unknown, one of the difficulties the MR spectroscopist has to face is the determination of the correct phase correction. When only a few spectra have to be processed, this is usually performed manually. However, this correction needs to be automated as soon as a large number of spectra is involved, like in the case of phase coherent averaging or when the signals collected with phased array coils have to be combined. A second post-processing requirement is the frequency axis assignment. In standard mono-voxel MR spectroscopy, this can also be easily performed manually, by simply assigning a frequency value to a well-known resonance (e.g. the water or NAA resonance in the case of brain spectroscopy). However, when the correction of a frequency shift is required before averaging a large amount of spectra (due to B 0 spatial inhomogeneities in chemical shift imaging, or resulting from motion for example), this post-processing definitely needs to be performed automatically.

Materials and methods

Zero-order phase and frequency shift of a MR spectrum are linked respectively to zero-order and first-order phase variations in the corresponding free induction decay (FID) signal. One of the simplest ways to remove the phase component of a signal is to calculate the modulus of this signal: this approach is the basis of the correction technique presented here.

Results

We show that selecting the modulus of the FID allows, under certain conditions that are detailed, to automatically phase correct and frequency align the spectra. This correction technique can be for example applied to the summation of signals acquired from combined phased array coils, to phase coherent averaging and to B 0 shift correction.

Conclusion

We demonstrate that working on the modulus of the FID signal is a simple and efficient way to both phase correct and frequency align MR spectra automatically. This approach is particularly well suited to brain proton MR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Composite signal:

A simulated signal composed of one or several FIDs, and eventually a noise signal

Conventional processing:

Refers to the conventional post-processing performed on the original FID signal: this is the conventional technique, compared in this study to the modulus post-processing (see below)

CSI:

Chemical shift imaging

FID:

Free induction decay

FWHM:

Full Width at Half the Maximum

LB:

Line broadening in Hz. LB is the full width at half maximum (FWHM) of the peak obtained after fast Fourier transformation of a time decaying exponential function e (−πLBt) [1]

Modulus processing:

Refers to the post-processing performed on the modulus of the FID signal as presented in this study and compared to the conventional technique (see above)

MRS:

Magnetic resonance spectroscopy

MRI:

Magnetic resonance imaging

SNR:

Signal-to-noise ratio, calculated as the maximum of the peak over the standard deviation of the noise in a frequency range selected in a region of the spectrum devoid of other signals and/or artifacts

SD:

Standard deviation

SW:

Spectral width

References

  1. Higinbotham J, Marshall I (2000) NMR lineshapes and lineshape fitting procedures. Annu Rep NMR Spectrosc 43:59–120

    Article  Google Scholar 

  2. Thiel T, Czisch M, Elbel GK, Hennig J (2002) Phase coherent averaging in magnetic resonance spectroscopy using interleaved navigator scans: compensation of motion artifacts and magnetic field instabilities. Magn Reson Med 47(6):1077–1082

    Article  PubMed  Google Scholar 

  3. Dydak U, Weiger M, Pruessmann KP, Meier D, Boesiger P (2001) Sensitivity-encoded spectroscopic imaging. Magn Reson Med 46(4):713–722

    Article  PubMed  CAS  Google Scholar 

  4. Maril N, Lenkinski RE (2005) An automated algorithm for combining multivoxel MRS data acquired with phased-array coils. J Magn Reson Imaging 21(3):317–322

    Article  PubMed  Google Scholar 

  5. Ratiney H, Sdika M, Coenradie Y, Cavassila S, Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18(1):1–13

    Article  PubMed  CAS  Google Scholar 

  6. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129(1):35–43

    Article  PubMed  CAS  Google Scholar 

  7. Brown MA (2004) Time-domain combination of MR spectroscopy data acquired using phased-array coils. Magn Reson Med 52(5):1207–1213

    Article  PubMed  Google Scholar 

  8. Maudsley AA, Darkazanli A, Alger JR, Hall LO, Schuff N, Studholme C, Yu Y, Ebel A, Frew A, Goldgof D, Gu Y, Pagare R, Rousseau F, Sivasankaran K, Soher BJ, Weber P, Young K, Zhu X (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19(4):492–503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Dong Z, Peterson B (2007) The rapid and automatic combination of proton MRSI data using multi-channel coils without water suppression. Magn Reson Imaging 25(8):1148–1154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Natt O, Bezkorovaynyy V, Michaelis T, Frahm J (2005) Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med 53(1):3–8

    Article  PubMed  CAS  Google Scholar 

  11. Prock T, Collins DJ, Dzik-Jurasz AS, Leach MO (2002) An algorithm for the optimum combination of data from arbitrary magnetic resonance phased array probes. Phys Med Biol 47(2):N39–N46

    Article  PubMed  CAS  Google Scholar 

  12. Schaffter T, Bornert P, Leussler C, Carlsen IC, Leibfritz D (1998) Fast 1H spectroscopic imaging using a multi-element head-coil array. Magn Reson Med 40(2):185–193

    Article  PubMed  CAS  Google Scholar 

  13. Antoine JP, Chauvin C, Coron A (2001) Wavelets and related time-frequency techniques in magnetic resonance spectroscopy. NMR Biomed 14(4):265–270

    Article  PubMed  CAS  Google Scholar 

  14. Ebel A, Soher BJ, Maudsley AA (2001) Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magn Reson Med 46(6):1072–1078

    Article  PubMed  CAS  Google Scholar 

  15. Bhattacharyya PK, Lowe MJ, Phillips MD (2007) Spectral quality control in motion-corrupted single-voxel J-difference editing scans: an interleaved navigator approach. Magn Reson Med 58(4):808–812

    Article  PubMed  CAS  Google Scholar 

  16. Star-Lack J, Spielman D, Adalsteinsson E, Kurhanewicz J, Terris DJ, Vigneron DB (1998) In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors. J Magn Reson 133(2):243–254

    Article  PubMed  CAS  Google Scholar 

  17. Evans CJ, Puts NA, Robson SE, Boy F, McGonigle DJ, Sumner P, Singh KD, Edden RA (2012) Subtraction artifacts and frequency (Mis-)alignment in J-difference GABA editing. J Magn Reson Imaging. doi:10.1002/jmri.23923

    PubMed Central  Google Scholar 

  18. Le Fur Y, Nicoli F, Guye M, Confort-Gouny S, Cozzone PJ, Kober F (2010) Grid-free interactive and automated data processing for MR chemical shift imaging data. Magn Reson Mater Phy 23(1):23–30

    Article  CAS  Google Scholar 

  19. Serrai H, Clayton DB, Senhadji L, Zuo C, Lenkinski RE (2002) Localized proton spectroscopy without water suppression: removal of gradient induced frequency modulations by modulus signal selection. J Magn Reson 154(1):53–59

    Article  PubMed  CAS  Google Scholar 

  20. Sijbers J, den Dekker AJ, Van Audekerke J, Verhoye M, Van Dyck D (1998) Estimation of the noise in magnitude MR images. Magn Reson Imaging 16(1):87–90

    Article  PubMed  CAS  Google Scholar 

  21. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Pijnappel W, Van den Boogaart A, De Beer R, Van Ormondt D (1992) SVD-based quantification of magnetic resonance signals. J Magn Reson 97:97–122

    Google Scholar 

  23. Sdika M, Le Fur Y, Cozzone PJ (2011) Optimal recombination of multi-coils CSI data using image based sensitivity map. In: Proceeding of the 19th annual meeting, international society of magnetic resonance in medicine, Montral, Canada, p 3478

  24. Sdika M, Le Fur Y, Cozzone PJ (2011) Optimal recombination of multi-coils CSI data using image based sensitivity map. In: Proceedings of the European Society of magnetic resonance in medicine and biology, Leipzig, DE, p 583

  25. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, Bloomer C (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61(3):548–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1):26–30

    Article  PubMed  CAS  Google Scholar 

  27. Ebel A, Maudsley AA (2005) Detection and correction of frequency instabilities for volumetric 1H echo-planar spectroscopic imaging. Magn Reson Med 53(2):465–469

    Article  PubMed  Google Scholar 

  28. Chadzynski GL, Klose U (2013) Proton CSI without solvent suppression with strongly reduced field gradient related sideband artifacts. Magn Reson Mater Phy 26(2):183–192

    Article  CAS  Google Scholar 

  29. Chadzynski GL, Klose U (2010) Chemical shift imaging without water suppression at 3 T. Magn Reson Imaging 28(5):669–675

    Article  PubMed  CAS  Google Scholar 

  30. Dong Z, Dreher W, Leibfritz D (2004) Experimental method to eliminate frequency modulation sidebands in localized in vivo 1H MR spectra acquired without water suppression. Magn Reson Med 51(3):602–606

    Article  PubMed  Google Scholar 

  31. Dong Z, Dreher W, Leibfritz D (2006) Toward quantitative short-echo-time in vivo proton MR spectroscopy without water suppression. Magn Reson Med 55(6):1441–1446

    Article  PubMed  CAS  Google Scholar 

  32. Nixon TW, McIntyre S, Rothman DL, de Graaf RA (2008) Compensation of gradient-induced magnetic field perturbations. J Magn Reson 192(2):209–217

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Le Fur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Fur, Y., Cozzone, P.J. FID modulus: a simple and efficient technique to phase and align MR spectra. Magn Reson Mater Phy 27, 131–148 (2014). https://doi.org/10.1007/s10334-013-0381-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0381-8

Keywords

Navigation