Skip to main content

Advertisement

Log in

Proteomic analysis of the biological response of MG63 osteoblast-like cells to titanium implants

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Understanding of the interaction between human MG63 osteoblast-like cells and surfaces is necessary in the field of tissue engineering and biomaterials. Various titanium surfaces are widely used as not only implant materials, but also as miniscrews in orthodontics. Our goal was to assess the proteomic response of MG63 osteoblast-like cells to different titanium surfaces. MG63 osteoblast-like cells were cultured on three different titanium surfaces: a smooth surface (S), a sandblasted with large grit and acid-etched surface (SLA), and a surface coated with a thin layer of hydroxyapatite (HA). Cells grown on the rougher surfaces (SLA and HA) exhibited downregulated cell proliferation and morphological changes. In the proteomic analysis, cells grown on the SLA surface showed upregulated expression of protocadherin-β3 precursor, kinase insert domain receptor, fibroblast growth factor receptor-3, and insulin-like growth factor I, while the expression levels of cell adhesion kinase, collagen α-1(I) chain precursor, collagen type XI α2, and cadherin-11 were upregulated in cells grown on the HA surface. These proteins are known to be involved in osteoblast adhesion, growth, and differentiation. Thus, the surface properties of dental materials can influence the expression of proteins involved in osseointegration-related processes. Proteomic analysis may reveal changes in novel proteins that explain why osseointegration varies depending on surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lohmann CH, Sagun R Jr, Sylvia VL, et al. Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)(2)D(3) through regulation of phospholipase A(2) activity and activation of protein kinase A. J Biomed Mater Res. 1999;47:139–51.

    Article  PubMed  Google Scholar 

  2. Martin JY, Schwartz Z, Hummert TW, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res. 1995;29:389–401.

    Article  PubMed  Google Scholar 

  3. Kieswetter K, Schwartz Z, Hummert TW, et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res. 1996;32:55–63.

    Article  PubMed  Google Scholar 

  4. Lossdorfer S, Schwartz Z, Wang L, et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. J Biomed Mater Res A. 2004;70:361–9.

    Article  PubMed  Google Scholar 

  5. Lohmann CH, Tandy EM, Sylvia VL, et al. Response of normal female human osteoblasts (NHOst) to 17β-estradiol is modulated by implant surface morphology. J Biomed Mater Res. 2002;62:204–13.

    Article  PubMed  Google Scholar 

  6. Ong JL, Cardenas HL, Cavin R, Carnes DL Jr. Osteoblast responses to BMP-2-treated titanium in vitro. Int J Oral Maxillofac Implant. 1997;12:649–54.

    Google Scholar 

  7. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH. Implant surface roughness and bone healing: a systematic review. J Dent Res. 2006;85:496–500.

    Article  PubMed  Google Scholar 

  8. Ellingsen JE, Thomsen P, Lyngstadaas SP. Advances in dental implant materials and tissue regeneration. Periodontol 2000. 2006;41:136–56.

    Article  PubMed  Google Scholar 

  9. Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2:120–8.

    Article  PubMed  Google Scholar 

  10. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R. Osteoblastic responses to TGF-β during bone remodeling. Mol Biol Cell. 1998;9:1903–18.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Celis JE, Ostergaard M, Jensen NA, et al. Human and mouse proteomic databases: novel resources in the protein universe. FEBS Lett. 1998;430:64–72.

    Article  PubMed  Google Scholar 

  12. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implant. 2000;15:779–84.

    Google Scholar 

  13. Choi JM, Kim HE, Lee IS. Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials. 2000;21:469–73.

    Article  PubMed  Google Scholar 

  14. Choe LH, Lee KH. A comparison of three commercially available isoelectric focusing units for proteome analysis: the multiphor, the IPGphor and the protean IEF cell. Electrophoresis. 2000;21:993–1000.

    Article  PubMed  Google Scholar 

  15. Yan JX, Wait R, Berkelman T, et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis. 2000;21:3666–72.

    Article  PubMed  Google Scholar 

  16. Zuo X, Speicher DW. Quantitative evaluation of protein recoveries in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 2000;21:3035–47.

    Article  PubMed  Google Scholar 

  17. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990;143:420–30.

    Article  PubMed  Google Scholar 

  18. Kim CS, Sohn SH, Jeon SK, et al. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J Oral Rehabil. 2006;33:368–79.

    Article  PubMed  Google Scholar 

  19. Buser D, Nydegger T, Oxland T, et al. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res. 1999;45:75–83.

    Article  PubMed  Google Scholar 

  20. Cordioli G, Majzoub Z, Piattelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implant. 2000;15:668–74.

    Google Scholar 

  21. Han CH, Johansson CB, Wennerberg A, Albrektsson T. Quantitative and qualitative investigations of surface enlarged titanium and titanium alloy implants. Clin Oral Implant Res. 1998;9:1–10.

    Article  Google Scholar 

  22. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199–214.

    Article  PubMed  Google Scholar 

  23. d’Aquino R, Graziano A, Sampaolesi M, et al. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ. 2007;14:1162–71.

    Article  PubMed  Google Scholar 

  24. Deckers MM, Karperien M, van der Bent C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology. 2000;141:1667–74.

    Article  PubMed  Google Scholar 

  25. Abe E, Marians RC, Yu W, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003;115:151–62.

    Article  PubMed  Google Scholar 

  26. Partanen J, Makela TP, Eerola E, et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 1991;10:1347–54.

    PubMed Central  PubMed  Google Scholar 

  27. Wang E, Wang J, Chin E, Zhou J, Bondy CA. Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis. Endocrinology. 1995;136:2741–51.

    PubMed  Google Scholar 

  28. Zhang M, Xuan S, Bouxsein ML, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277:44005–12.

    Article  PubMed  Google Scholar 

  29. Jiang J, Lichtler AC, Gronowicz GA, et al. Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone. 2006;39:494–504.

    Article  PubMed  Google Scholar 

  30. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res. 2007;25:1213–20.

    Article  PubMed  Google Scholar 

  31. Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 2006;20:2492–506.

    Article  PubMed  Google Scholar 

  32. Urabe K, Jingushi S, Ikenoue T, et al. Immature osteoblastic cells express the pro-α2(XI) collagen gene during bone formation in vitro and in vivo. J Orthop Res. 2001;19:1013–20.

    Article  PubMed  Google Scholar 

  33. Okazaki M, Takeshita S, Kawai S, et al. Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem. 1994;269:12092–8.

    PubMed  Google Scholar 

  34. Taira M, Nakao H, Takahashi J, Araki Y. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J Oral Rehabil. 2003;30:697–701.

    Article  PubMed  Google Scholar 

  35. Bessho K, Carnes DL, Cavin R, Chen HY, Ong JL. BMP stimulation of bone response adjacent to titanium implants in vivo. Clin Oral Implants Res. 1999;10:212–8.

    Article  PubMed  Google Scholar 

  36. Weyts FA, Li YS, van Leeuwen J, Weinans H, Chien S. ERK activation and alpha v β3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem. 2002;87:85–92.

    Article  PubMed  Google Scholar 

  37. Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis. 1997;18:533–7.

    Article  PubMed  Google Scholar 

  38. Chen G, Gharib TG, Huang CC, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1:304–13.

    Article  PubMed  Google Scholar 

  39. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res. 2003;18:1842–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the National Research Foundation of Korea (2011-0006498 to H.K.) and a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare, & Family Affairs (A103001 to H.K.).

Conflict of interest

The authors declare that they have no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Jun Ryu or Hang-Rae Kim.

Additional information

C.-S. Kim and K.-J. Lee equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CS., Lee, KJ., Kim, JE. et al. Proteomic analysis of the biological response of MG63 osteoblast-like cells to titanium implants. Odontology 102, 241–248 (2014). https://doi.org/10.1007/s10266-013-0115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-013-0115-4

Keywords

Navigation